亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing integration of capacitive fingerprint recognition sensors in IoT devices presents new challenges in digital forensics, particularly in the context of advanced fingerprint spoofing. Previous research has highlighted the effectiveness of materials such as latex and silicone in deceiving biometric systems. In this study, we introduce Alginate, a biopolymer derived from brown seaweed, as a novel material with the potential for spoofing IoT-specific capacitive fingerprint sensors. Our research uses Alginate and cutting-edge image recognition techniques to unveil a nuanced IoT vulnerability that raises significant security and privacy concerns. Our proof-of-concept experiments employed authentic fingerprint molds to create Alginate replicas, which exhibited remarkable visual and tactile similarities to real fingerprints. The conductivity and resistivity properties of Alginate, closely resembling human skin, make it a subject of interest in the digital forensics field, especially regarding its ability to spoof IoT device sensors. This study calls upon the digital forensics community to develop advanced anti-spoofing strategies to protect the evolving IoT infrastructure against such sophisticated threats.

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

The prevalent approach in speech emotion recognition (SER) involves integrating both audio and textual information to comprehensively identify the speaker's emotion, with the text generally obtained through automatic speech recognition (ASR). An essential issue of this approach is that ASR errors from the text modality can worsen the performance of SER. Previous studies have proposed using an auxiliary ASR error detection task to adaptively assign weights of each word in ASR hypotheses. However, this approach has limited improvement potential because it does not address the coherence of semantic information in the text. Additionally, the inherent heterogeneity of different modalities leads to distribution gaps between their representations, making their fusion challenging. Therefore, in this paper, we incorporate two auxiliary tasks, ASR error detection (AED) and ASR error correction (AEC), to enhance the semantic coherence of ASR text, and further introduce a novel multi-modal fusion (MF) method to learn shared representations across modalities. We refer to our method as MF-AED-AEC. Experimental results indicate that MF-AED-AEC significantly outperforms the baseline model by a margin of 4.1\%.

The widespread use of mobile devices for all kind of transactions makes necessary reliable and real-time identity authentication, leading to the adoption of face recognition (FR) via the cameras embedded in such devices. Progress of deep Convolutional Neural Networks (CNNs) has provided substantial advances in FR. Nonetheless, the size of state-of-the-art architectures is unsuitable for mobile deployment, since they often encompass hundreds of megabytes and millions of parameters. We address this by studying methods for deep network compression applied to FR. In particular, we apply network pruning based on Taylor scores, where less important filters are removed iteratively. The method is tested on three networks based on the small SqueezeNet (1.24M parameters) and the popular MobileNetv2 (3.5M) and ResNet50 (23.5M) architectures. These have been selected to showcase the method on CNNs with different complexities and sizes. We observe that a substantial percentage of filters can be removed with minimal performance loss. Also, filters with the highest amount of output channels tend to be removed first, suggesting that high-dimensional spaces within popular CNNs are over-dimensionated.

Effective meetings are effortful, but traditional videoconferencing systems offer little support for reducing this effort across the meeting lifecycle. Generative AI (GenAI) has the potential to radically redefine meetings by augmenting intentional meeting behaviors. CoExplorer, our novel adaptive meeting prototype, preemptively generates likely phases that meetings would undergo, tools that allow capturing attendees' thoughts before the meeting, and for each phase, window layouts, and appropriate applications and files. Using CoExplorer as a technology probe in a guided walkthrough, we studied its potential in a sample of participants from a global technology company. Our findings suggest that GenAI has the potential to help meetings stay on track and reduce workload, although concerns were raised about users' agency, trust, and possible disruption to traditional meeting norms. We discuss these concerns and their design implications for the development of GenAI meeting technology.

While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.

We introduce a new tool, Transductive Local Complexity (TLC), designed to analyze the generalization performance of transductive learning methods and inspire the development of new algorithms in this domain. Our work extends the concept of the popular Local Rademacher Complexity (LRC) to the transductive setting, incorporating significant and novel modifications compared to the typical analysis of LRC methods in the inductive setting. While LRC has been widely used as a powerful tool for analyzing inductive models, providing sharp generalization bounds for classification and minimax rates for nonparametric regression, it remains an open question whether a localized Rademacher complexity-based tool can be developed for transductive learning. Our goal is to achieve sharp bounds for transductive learning that align with the inductive excess risk bounds established by LRC. We provide a definitive answer to this open problem with the introduction of TLC. We construct TLC by first establishing a novel and sharp concentration inequality for the supremum of a test-train empirical processes. Using a peeling strategy and a new surrogate variance operator, we derive the a novel excess risk bound in the transductive setting which is consistent with the classical LRC-based excess risk bound in the inductive setting. As an application of TLC, we employ this new tool to analyze the Transductive Kernel Learning (TKL) model, deriving sharper excess risk bounds than those provided by the current state-of-the-art under the same assumptions. Additionally, the concentration inequality for the test-train process is employed to derive a sharp concentration inequality for the general supremum of empirical processes involving random variables in the setting of uniform sampling without replacement. The sharpness of our derived bound is compared to existing concentration inequalities under the same conditions.

The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.

Collaborative software development happens in teams, that cooperate on shared artefacts, and discuss development on online platforms. Due to the complexity of development and the variety of teams, software components often act as effective containers for parallel work and teams. Past research has shown how communication between team members, especially in an open-source environment, can become extremely toxic, and lead to members leaving the development team. This has a direct effect on the evolution and maintenance of the project in which the former members were active in. The purpose of our study is two-fold: first, we propose an approach to evaluate, at a finer granularity, the positive and negative emotions in the communication between developers; and second, we aim to characterise a project's development paths, or components, as more or less impacted by the emotions. Our analysis evaluates single sentences rather than whole messages as the finest granularity of communication. The previous study found that the high positivity or negativity at the sentence level may indirectly impact the writer him/herself, or the reader. In this way, we could highlight specific paths of Gentoo as the most affected by negative emotions, and show how negative emotions have evolved and changed along the same paths. By joining the analysis of the mailing lists, from which we derive the sentiment of the developers, with the information derived from the development logs, we obtained a longitudinal picture of how development paths have been historically affected by positive or negative emotions. Our study shows that, in recent years, negative emotions have generally decreased in the communication between Gentoo developers. We also show how file paths, as collaborative software development artefacts, were more or less impacted by the emotions of the developers.

Recent work in automated program repair (APR) proposes the use of reasoning and patch validation feedback to reduce the semantic gap between the LLMs and the code under analysis. The idea has been shown to perform well for general APR, but its effectiveness in other particular contexts remains underexplored. In this work, we assess the impact of reasoning and patch validation feedback to LLMs in the context of vulnerability repair, an important and challenging task in security. To support the evaluation, we present VRpilot, an LLM-based vulnerability repair technique based on reasoning and patch validation feedback. VRpilot (1) uses a chain-of-thought prompt to reason about a vulnerability prior to generating patch candidates and (2) iteratively refines prompts according to the output of external tools (e.g., compiler, code sanitizers, test suite, etc.) on previously-generated patches. To evaluate performance, we compare VRpilot against the state-of-the-art vulnerability repair techniques for C and Java using public datasets from the literature. Our results show that VRpilot generates, on average, 14% and 7.6% more correct patches than the baseline techniques on C and Java, respectively. We show, through an ablation study, that reasoning and patch validation feedback are critical. We report several lessons from this study and potential directions for advancing LLM-empowered vulnerability repair

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

北京阿比特科技有限公司