亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate air pollution forecasting plays a crucial role in controlling air quality and minimizing adverse effects on human life. Among pollutants, atmospheric particulate matter (PM) is particularly significant, affecting both visibility and human health. In this study the concentration of air pollutants and comprehensive air quality index (CAI) data collected from 2015 to 2018 in Seoul, South Korea was analyzed. Using two different statistical models: error, trend, season (ETS) and autoregressive moving-average (ARIMA), measured monthly average PM2.5 concentration were used as input to forecast the monthly averaged concentration of PM2.5 12 months ahead. To evaluate the performance of the ETS model, five evaluation criteria were used: mean error (ME), root mean squared error (RMSE), mean absolute error (MAE), mean percentage error (MPE), and mean absolute percentage error (MAPE). Data collected from January 2019 to December 2019 were used for cross-validation check of ETS model. The best fitted ARIMA model was determined by examining the AICc (Akaike Information Criterion corrected) value. The results indicated that the ETS model outperforms the ARIMA model.

相關內容

ETS:European Test Symposium。 Explanation:歐洲測試研討會。 Publisher:IEEE。 SIT:

This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables. The key idea is the design of switching policies that can take conformal quantiles as input, which we define as conformal policy learning, that allows robots to detect distribution shifts with formal statistical guarantees. We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics, e.g. safety or speed, or directly augmenting a policy observation with a quantile and training it with reinforcement learning. Theoretically, we show that such policies achieve the formal convergence guarantees in finite time. In addition, we thoroughly evaluate their advantages and limitations on two compelling use cases: simulated autonomous driving and active perception with a physical quadruped. Empirical results demonstrate that our approach outperforms five baselines. It is also the simplest of the baseline strategies besides one ablation. Being easy to use, flexible, and with formal guarantees, our work demonstrates how conformal prediction can be an effective tool for sensorimotor learning under uncertainty.

A major bottleneck to scaling-up training of self-driving perception systems are the human annotations required for supervision. A promising alternative is to leverage "auto-labelling" offboard perception models that are trained to automatically generate annotations from raw LiDAR point clouds at a fraction of the cost. Auto-labels are most commonly generated via a two-stage approach -- first objects are detected and tracked over time, and then each object trajectory is passed to a learned refinement model to improve accuracy. Since existing refinement models are overly complex and lack advanced temporal reasoning capabilities, in this work we propose LabelFormer, a simple, efficient, and effective trajectory-level refinement approach. Our approach first encodes each frame's observations separately, then exploits self-attention to reason about the trajectory with full temporal context, and finally decodes the refined object size and per-frame poses. Evaluation on both urban and highway datasets demonstrates that LabelFormer outperforms existing works by a large margin. Finally, we show that training on a dataset augmented with auto-labels generated by our method leads to improved downstream detection performance compared to existing methods. Please visit the project website for details //waabi.ai/labelformer

Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at //github.com/yanlinf/CASENT.

The deployment of heterogeneous teams of both air and ground mobile assets combines the advantages of mobility, sensing capability, and operational duration when performing complex tasks. Air assets in such teams act to relay information between ground assets but must maintain unblocked paths to enable high-capacity communication modes. Obstacles in the operational environment may block the line of sight (LoS) between air assets and ground assets depending on their locations and heights. In this paper, we analyze the probability of spanning a two-hop communication between a pair of ground assets deployed in an environment with obstacles at random locations and with random heights (i.e. a Poisson Forest) using an air asset at any location near the ground assets. We provide a closed-form expression of the LoS probability based on the 3-dimensional locations of the air asset. We then compute a 3-D manifold of the air asset locations that satisfy a given LoS probability constraint. We further consider throughput as a measure of communication quality, and use it as an optimization objective.

We survey recent work on machine learning (ML) techniques for selecting cutting planes (or cuts) in mixed-integer linear programming (MILP). Despite the availability of various classes of cuts, the task of choosing a set of cuts to add to the linear programming (LP) relaxation at a given node of the branch-and-bound (B&B) tree has defied both formal and heuristic solutions to date. ML offers a promising approach for improving the cut selection process by using data to identify promising cuts that accelerate the solution of MILP instances. This paper presents an overview of the topic, highlighting recent advances in the literature, common approaches to data collection, evaluation, and ML model architectures. We analyze the empirical results in the literature in an attempt to quantify the progress that has been made and conclude by suggesting avenues for future research.

The valence analysis of speakers' utterances or written posts helps to understand the activation and variations of the emotional state throughout the conversation. More recently, the concept of Emotion Carriers (EC) has been introduced to explain the emotion felt by the speaker and its manifestations. In this work, we investigate the natural inter-dependency of valence and ECs via a multi-task learning approach. We experiment with Pre-trained Language Models (PLM) for single-task, two-step, and joint settings for the valence and EC prediction tasks. We compare and evaluate the performance of generative (GPT-2) and discriminative (BERT) architectures in each setting. We observed that providing the ground truth label of one task improves the prediction performance of the models in the other task. We further observed that the discriminative model achieves the best trade-off of valence and EC prediction tasks in the joint prediction setting. As a result, we attain a single model that performs both tasks, thus, saving computation resources at training and inference times.

Decentralized learning (DL) systems have been gaining popularity because they avoid raw data sharing by communicating only model parameters, hence preserving data confidentiality. However, the large size of deep neural networks poses a significant challenge for decentralized training, since each node needs to exchange gigabytes of data, overloading the network. In this paper, we address this challenge with JWINS, a communication-efficient and fully decentralized learning system that shares only a subset of parameters through sparsification. JWINS uses wavelet transform to limit the information loss due to sparsification and a randomized communication cut-off that reduces communication usage without damaging the performance of trained models. We demonstrate empirically with 96 DL nodes on non-IID datasets that JWINS can achieve similar accuracies to full-sharing DL while sending up to 64% fewer bytes. Additionally, on low communication budgets, JWINS outperforms the state-of-the-art communication-efficient DL algorithm CHOCO-SGD by up to 4x in terms of network savings and time.

Nonlinear distortion stemming from low-cost power amplifiers may severely affect wireless communication performance through out-of-band (OOB) radiation and in-band distortion. The distortion is correlated between different transmit antennas in an antenna array, which results in a beamforming gain at the receiver side that grows with the number of antennas. In this paper, we investigate how the strength of the distortion is affected by the frequency selectivity of the channel. A closed-form expression for the received distortion power is derived as a function of the number of multipath components (MPCs) and the delay spread, which highlight their impact. The performed analysis, which is verified via numerical simulations, reveals that as the number of MPCs increases, distortion exhibits distinct characteristics for in-band and OOB frequencies. It is shown that the received in-band and OOB distortion power is inversely proportional to the number of MPCs, and it is reported that as the delay spread gets narrower, the in-band distortion power is beamformed towards the intended user, which yields higher received in-band distortion compared to the OOB distortion.

Understanding the parameter estimation of softmax gating Gaussian mixture of experts has remained a long-standing open problem in the literature. It is mainly due to three fundamental theoretical challenges associated with the softmax gating function: (i) the identifiability only up to the translation of parameters; (ii) the intrinsic interaction via partial differential equations between the softmax gating and the expert functions in the Gaussian density; (iii) the complex dependence between the numerator and denominator of the conditional density of softmax gating Gaussian mixture of experts. We resolve these challenges by proposing novel Voronoi loss functions among parameters and establishing the convergence rates of maximum likelihood estimator (MLE) for solving parameter estimation in these models. When the true number of experts is unknown and over-specified, our findings show a connection between the convergence rate of the MLE and a solvability problem of a system of polynomial equations.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司