亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-supervised methods have been proven effective for learning deep representations of 3D point cloud data. Although recent methods in this domain often rely on random masking of inputs, the results of this approach can be improved. We introduce PointCAM, a novel adversarial method for learning a masking function for point clouds. Our model utilizes a self-distillation framework with an online tokenizer for 3D point clouds. Compared to previous techniques that optimize patch-level and object-level objectives, we postulate applying an auxiliary network that learns how to select masks instead of choosing them randomly. Our results show that the learned masking function achieves state-of-the-art or competitive performance on various downstream tasks. The source code is available at //github.com/szacho/pointcam.

相關內容

In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by aligning the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms.

In this work, we propose a fast adaptive federated meta-learning (FAM) framework for collaboratively learning a single global model, which can then be personalized locally on individual clients. Federated learning enables multiple clients to collaborate to train a model without sharing data. Clients with insufficient data or data diversity participate in federated learning to learn a model with superior performance. Nonetheless, learning suffers when data distributions diverge. There is a need to learn a global model that can be adapted using client's specific information to create personalized models on clients is required. MRI data suffers from this problem, wherein, one, due to data acquisition challenges, local data at a site is sufficient for training an accurate model and two, there is a restriction of data sharing due to privacy concerns and three, there is a need for personalization of a learnt shared global model on account of domain shift across client sites. The global model is sparse and captures the common features in the MRI. This skeleton network is grown on each client to train a personalized model by learning additional client-specific parameters from local data. Experimental results show that the personalization process at each client quickly converges using a limited number of epochs. The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism. Additionally, the sparse parameter set to be communicated during federated learning drastically reduced communication overhead, which makes the scheme viable for networks with limited resources.

A popular approach to deploying scientific applications in high performance computing (HPC) is Linux containers, which package an application and all its dependencies as a single unit. This image is built by interpreting instructions in a machine-readable recipe, which is faster with a build cache that stores instruction results for re-use. The standard approach (used e.g. by Docker and Podman) is a many-layered union filesystem, encoding differences between layers as tar archives. Our experiments show this performs similarly to layered caches on both build time and disk usage, with a considerable advantage for many-instruction recipes. Our approach also has structural advantages: better diff format, lower cache overhead, and better file de-duplication. These results show that a Git-based cache for layer-free container implementations is not only possible but may outperform the layered approach on important dimensions.

For multivariate data with noise variables, tandem clustering is a well-known technique that aims to improve cluster identification by first reducing the dimension. However, the usual approach using principal component analysis (PCA) has been criticized for focusing only on inertia so that the first components do not necessarily retain the structure of interest for clustering. To overcome this drawback, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while returning affine invariant components. Some theoretical results have already been derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. Nevertheless, ICS has received little attention in a clustering context. Two challenges are the choice of the pair of scatter matrices and the selection of the components to retain. For clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix that captures the within-cluster structure and another that captures the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully selected subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure present in data. In an extensive simulation study and in empirical applications with benchmark data sets, different combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the approach with PCA.

We present a framework for approximate Bayesian inference when only a limited number of noisy log-likelihood evaluations can be obtained due to computational constraints, which is becoming increasingly common for applications of complex models. We model the log-likelihood function using a Gaussian process (GP) and the main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take if it was applicable. Informative log-likelihood evaluation locations are selected using a sequential experimental design strategy until the MH accept/reject decision is done accurately enough according to the GP model. The resulting approximate sampler is conceptually simple and sample-efficient. It is also more robust to violations of GP modelling assumptions compared with earlier, related "Bayesian optimisation-like" methods tailored for Bayesian inference. We discuss some theoretical aspects and various interpretations of the resulting approximate MH sampler, and demonstrate its benefits in the context of Bayesian and generalised Bayesian likelihood-free inference for simulator-based statistical models.

Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks without sampling SDE trajectories or inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one by one, reducing the memory load and difficulty in performing end-to-end deep flow network training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with the existing flow and diffusion models at a significantly reduced computational and memory cost.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

北京阿比特科技有限公司