Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding.
Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: //littlepure2333.github.io/MindBridge
Leveraging vast training data, multimodal large language models (MLLMs) have demonstrated formidable general visual comprehension capabilities and achieved remarkable performance across various tasks. However, their performance in visual document understanding still leaves much room for improvement. This discrepancy is primarily attributed to the fact that visual document understanding is a fine-grained prediction task. In natural scenes, MLLMs typically use low-resolution images, leading to a substantial loss of visual information. Furthermore, general-purpose MLLMs do not excel in handling document-oriented instructions. In this paper, we propose a High-Resolution Visual Document Assistant (HRVDA), which bridges the gap between MLLMs and visual document understanding. This model employs a content filtering mechanism and an instruction filtering module to separately filter out the content-agnostic visual tokens and instruction-agnostic visual tokens, thereby achieving efficient model training and inference for high-resolution images. In addition, we construct a document-oriented visual instruction tuning dataset and apply a multi-stage training strategy to enhance the model's document modeling capabilities. Extensive experiments demonstrate that our model achieves state-of-the-art performance across multiple document understanding datasets, while maintaining training efficiency and inference speed comparable to low-resolution models.
Graph neural network (GNN)-based models have been extensively studied for recommendations, as they can extract high-order collaborative signals accurately which is required for high-quality recommender systems. However, they neglect the valuable information gained through negative feedback in two aspects: (1) different users might hold opposite feedback on the same item, which hampers optimal information propagation in GNNs, and (2) even when an item vastly deviates from users' preferences, they might still choose it and provide a negative rating. In this paper, we propose a negative feedback-aware recommender model (NFARec) that maximizes the leverage of negative feedback. To transfer information to multi-hop neighbors along an optimal path effectively, NFARec adopts a feedback-aware correlation that guides hypergraph convolutions (HGCs) to learn users' structural representations. Moreover, NFARec incorporates an auxiliary task - predicting the feedback sentiment polarity (i.e., positive or negative) of the next interaction - based on the Transformer Hawkes Process. The task is beneficial for understanding users by learning the sentiment expressed in their previous sequential feedback patterns and predicting future interactions. Extensive experiments demonstrate that NFARec outperforms competitive baselines. Our source code and data are released at //github.com/WangXFng/NFARec.
Adversarial robustness often comes at the cost of degraded accuracy, impeding the real-life application of robust classification models. Training-based solutions for better trade-offs are limited by incompatibilities with already-trained high-performance large models, necessitating the exploration of training-free ensemble approaches. Observing that robust models are more confident in correct predictions than in incorrect ones on clean and adversarial data alike, we speculate amplifying this "benign confidence property" can reconcile accuracy and robustness in an ensemble setting. To achieve so, we propose "MixedNUTS", a training-free method where the output logits of a robust classifier and a standard non-robust classifier are processed by nonlinear transformations with only three parameters, which are optimized through an efficient algorithm. MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output. On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness -- it boosts CIFAR-100 clean accuracy by 7.86 points, sacrificing merely 0.87 points in robust accuracy.
In situ approaches can accelerate the pace of scientific discoveries by allowing scientists to perform data analysis at simulation time. Current in situ workflow systems, however, face challenges in handling the growing complexity and diverse computational requirements of scientific tasks. In this work, we present Wilkins, an in situ workflow system that is designed for ease-of-use while providing scalable and efficient execution of workflow tasks. Wilkins provides a flexible workflow description interface, employs a high-performance data transport layer based on HDF5, and supports tasks with disparate data rates by providing a flow control mechanism. Wilkins seamlessly couples scientific tasks that already use HDF5, without requiring task code modifications. We demonstrate the above features using both synthetic benchmarks and two science use cases in materials science and cosmology.
3D stylization, which entails the application of specific styles to three-dimensional objects, holds significant commercial potential as it enables the creation of diverse 3D objects with distinct moods and styles, tailored to specific demands of different scenes. With recent advancements in text-driven methods and artificial intelligence, the stylization process is increasingly intuitive and automated, thereby diminishing the reliance on manual labor and expertise. However, existing methods have predominantly focused on holistic stylization, thereby leaving the application of styles to individual components of a 3D object unexplored. In response, we introduce 3DStyleGLIP, a novel framework specifically designed for text-driven, part-tailored 3D stylization. Given a 3D mesh and a text prompt, 3DStyleGLIP leverages the vision-language embedding space of the Grounded Language-Image Pre-training (GLIP) model to localize the individual parts of the 3D mesh and modify their colors and local geometries to align them with the desired styles specified in the text prompt. 3DStyleGLIP is effectively trained for 3D stylization tasks through a part-level style loss working in GLIP's embedding space, supplemented by two complementary learning techniques. Extensive experimental validation confirms that our method achieves significant part-wise stylization capabilities, demonstrating promising potential in advancing the field of 3D stylization.
Dexterous manipulation, particularly adept coordinating and grasping, constitutes a fundamental and indispensable capability for robots, facilitating the emulation of human-like behaviors. Integrating this capability into robots empowers them to supplement and even supplant humans in undertaking increasingly intricate tasks in both daily life and industrial settings. Unfortunately, contemporary methodologies encounter serious challenges in devising manipulation trajectories owing to the intricacies of tasks, the expansive robotic manipulation space, and dynamic obstacles. We propose a novel approach, APEX, to address all these difficulties by introducing a collision-free latent diffusion model for both robotic motion planning and manipulation. Firstly, we simplify the complexity of real-life ambidextrous dual-arm robotic manipulation tasks by abstracting them as aligning two vectors. Secondly, we devise latent diffusion models to produce a variety of robotic manipulation trajectories. Furthermore, we integrate obstacle information utilizing a classifier-guidance technique, thereby guaranteeing both the feasibility and safety of the generated manipulation trajectories. Lastly, we validate our proposed algorithm through extensive experiments conducted on the hardware platform of ambidextrous dual-arm robots. Our algorithm consistently generates successful and seamless trajectories across diverse tasks, surpassing conventional robotic motion planning algorithms. These results carry significant implications for the future design of diffusion robots, enhancing their capability to tackle more intricate robotic manipulation tasks with increased efficiency and safety. Complete video demonstrations of our experiments can be found in //sites.google.com/view/apex-dual-arm/home.
Trajectory prediction is fundamental in computer vision and autonomous driving, particularly for understanding pedestrian behavior and enabling proactive decision-making. Existing approaches in this field often assume precise and complete observational data, neglecting the challenges associated with out-of-view objects and the noise inherent in sensor data due to limited camera range, physical obstructions, and the absence of ground truth for denoised sensor data. Such oversights are critical safety concerns, as they can result in missing essential, non-visible objects. To bridge this gap, we present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique. Our approach denoises noisy sensor observations in an unsupervised manner and precisely maps sensor-based trajectories of out-of-sight objects into visual trajectories. This method has demonstrated state-of-the-art performance in out-of-sight noisy sensor trajectory denoising and prediction on the Vi-Fi and JRDB datasets. By enhancing trajectory prediction accuracy and addressing the challenges of out-of-sight objects, our work significantly contributes to improving the safety and reliability of autonomous driving in complex environments. Our work represents the first initiative towards Out-Of-Sight Trajectory prediction (OOSTraj), setting a new benchmark for future research. The code is available at \url{//github.com/Hai-chao-Zhang/OOSTraj}.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.