Visible-Infrared person re-identification (VI-ReID) is an important and challenging task in intelligent video surveillance. Existing methods mainly focus on learning a shared feature space to reduce the modality discrepancy between visible and infrared modalities, which still leave two problems underexplored: information redundancy and modality complementarity. To this end, properly eliminating the identity-irrelevant information as well as making up for the modality-specific information are critical and remains a challenging endeavor. To tackle the above problems, we present a novel mutual information and modality consensus network, namely CMInfoNet, to extract modality-invariant identity features with the most representative information and reduce the redundancies. The key insight of our method is to find an optimal representation to capture more identity-relevant information and compress the irrelevant parts by optimizing a mutual information bottleneck trade-off. Besides, we propose an automatically search strategy to find the most prominent parts that identify the pedestrians. To eliminate the cross- and intra-modality variations, we also devise a modality consensus module to align the visible and infrared modalities for task-specific guidance. Moreover, the global-local feature representations can also be acquired for key parts discrimination. Experimental results on four benchmarks, i.e., SYSU-MM01, RegDB, Occluded-DukeMTMC, Occluded-REID, Partial-REID and Partial\_iLIDS dataset, have demonstrated the effectiveness of CMInfoNet.
Haptic perception is highly important for immersive teleoperation of robots, especially for accomplishing manipulation tasks. We propose a low-cost haptic sensing and rendering system, which is capable of detecting and displaying surface roughness. As the robot fingertip moves across a surface of interest, two microphones capture sound coupled directly through the fingertip and through the air, respectively. A learning-based detector system analyzes the data in real time and gives roughness estimates with both high temporal resolution and low latency. Finally, an audio-based vibrational actuator displays the result to the human operator. We demonstrate the effectiveness of our system through lab experiments and our winning entry in the ANA Avatar XPRIZE competition finals, where briefly trained judges solved a roughness-based selection task even without additional vision feedback. We publish our dataset used for training and evaluation together with our trained models to enable reproducibility of results.
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.
Text-based visual question answering (TextVQA) faces the significant challenge of avoiding redundant relational inference. To be specific, a large number of detected objects and optical character recognition (OCR) tokens result in rich visual relationships. Existing works take all visual relationships into account for answer prediction. However, there are three observations: (1) a single subject in the images can be easily detected as multiple objects with distinct bounding boxes (considered repetitive objects). The associations between these repetitive objects are superfluous for answer reasoning; (2) two spatially distant OCR tokens detected in the image frequently have weak semantic dependencies for answer reasoning; and (3) the co-existence of nearby objects and tokens may be indicative of important visual cues for predicting answers. Rather than utilizing all of them for answer prediction, we make an effort to identify the most important connections or eliminate redundant ones. We propose a sparse spatial graph network (SSGN) that introduces a spatially aware relation pruning technique to this task. As spatial factors for relation measurement, we employ spatial distance, geometric dimension, overlap area, and DIoU for spatially aware pruning. We consider three visual relationships for graph learning: object-object, OCR-OCR tokens, and object-OCR token relationships. SSGN is a progressive graph learning architecture that verifies the pivotal relations in the correlated object-token sparse graph, and then in the respective object-based sparse graph and token-based sparse graph. Experiment results on TextVQA and ST-VQA datasets demonstrate that SSGN achieves promising performances. And some visualization results further demonstrate the interpretability of our method.
The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.
Voice conversion aims to convert source speech into a target voice using recordings of the target speaker as a reference. Newer models are producing increasingly realistic output. But what happens when models are fed with non-standard data, such as speech from a user with a speech impairment? We investigate how a recent voice conversion model performs on non-standard downstream voice conversion tasks. We use a simple but robust approach called k-nearest neighbors voice conversion (kNN-VC). We look at four non-standard applications: stuttered voice conversion, cross-lingual voice conversion, musical instrument conversion, and text-to-voice conversion. The latter involves converting to a target voice specified through a text description, e.g. "a young man with a high-pitched voice". Compared to an established baseline, we find that kNN-VC retains high performance in stuttered and cross-lingual voice conversion. Results are more mixed for the musical instrument and text-to-voice conversion tasks. E.g., kNN-VC works well on some instruments like drums but not on others. Nevertheless, this shows that voice conversion models - and kNN-VC in particular - are increasingly applicable in a range of non-standard downstream tasks. But there are still limitations when samples are very far from the training distribution. Code, samples, trained models: //rf5.github.io/sacair2023-knnvc-demo/.
Simultaneous Localization And Mapping (SLAM) has become a crucial aspect in the fields of autonomous driving and robotics. One crucial component of visual SLAM is the Field-of-View (FoV) of the camera, as a larger FoV allows for a wider range of surrounding elements and features to be perceived. However, when the FoV of the camera reaches the negative half-plane, traditional methods for representing image feature points using [u,v,1]^T become ineffective. While the panoramic FoV is advantageous for loop closure, its benefits are not easily realized under large-attitude-angle differences where loop-closure frames cannot be easily matched by existing methods. As loop closure on wide-FoV panoramic data further comes with a large number of outliers, traditional outlier rejection methods are not directly applicable. To address these issues, we propose LF-VISLAM, a Visual Inertial SLAM framework for cameras with extremely Large FoV with loop closure. A three-dimensional vector with unit length is introduced to effectively represent feature points even on the negative half-plane. The attitude information of the SLAM system is leveraged to guide the feature point detection of the loop closure. Additionally, a new outlier rejection method based on the unit length representation is integrated into the loop closure module. We collect the PALVIO dataset using a Panoramic Annular Lens (PAL) system with an entire FoV of 360{\deg}x(40{\deg}~120{\deg}) and an Inertial Measurement Unit (IMU) for Visual Inertial Odometry (VIO) to address the lack of panoramic SLAM datasets. Experiments on the established PALVIO and public datasets show that the proposed LF-VISLAM outperforms state-of-the-art SLAM methods. Our code will be open-sourced at //github.com/flysoaryun/LF-VISLAM.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm