亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It is known that listing all simplicial vertices can be done in $O(nm)$ time or $O(n^{\omega})$ time, where $O(n^{\omega})$ is the time needed to perform a fast matrix multiplication. The notion of avoidable vertices generalizes the concept of simplicial vertices in the following way: a vertex $u$ is avoidable if every induced path on three vertices with middle vertex $u$ is contained in an induced cycle. We present algorithms for listing all avoidable vertices of a graph through the notion of minimal triangulations and common neighborhood detection. In particular we give algorithms with running times $O(n^{2}m)$ and $O(n^{1+\omega})$, respectively. However, we propose a faster algorithm that runs in time $O(n^2 + m^2)$, and thus matches the corresponding running time of listing the simplicial vertices on sparse graphs with $m=O(n)$. To complement our results, we consider their natural generalizations of avoidable edges and avoidable paths. We propose an $O(nm)$-time algorithm that recognizes whether a given induced path is avoidable.

相關內容

The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.

We develop an algorithm that computes strongly continuous semigroups on infinite-dimensional Hilbert spaces with explicit error control. Given a generator $A$, a time $t>0$, an arbitrary initial vector $u_0$ and an error tolerance $\epsilon>0$, the algorithm computes $\exp(tA)u_0$ with error bounded by $\epsilon$. The algorithm is based on a combination of a regularized functional calculus, suitable contour quadrature rules, and the adaptive computation of resolvents in infinite dimensions. As a particular case, we show that it is possible, even when only allowing pointwise evaluation of coefficients, to compute, with error control, semigroups on the unbounded domain $L^2(\mathbb{R}^d)$ that are generated by partial differential operators with polynomially bounded coefficients of locally bounded total variation. For analytic semigroups (and more general Laplace transform inversion), we provide a quadrature rule whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points, that remains stable as $N\rightarrow\infty$, and which is also suitable for infinite-dimensional operators. Numerical examples are given, including: Schr\"odinger and wave equations on the aperiodic Ammann--Beenker tiling, complex perturbed fractional diffusion equations on $L^2(\mathbb{R})$, and damped Euler--Bernoulli beam equations.

In the Popular Matching problem, we are given a bipartite graph $G = (A \cup B, E)$ and for each vertex $v\in A\cup B$, strict preferences over the neighbors of $v$. Given two matchings $M$ and $M'$, matching $M$ is more popular than $M'$ if the number of vertices preferring $M$ to $M'$ is larger than the number of vertices preferring $M'$ to $M$. A matching $M$ is called popular if there is no matching $M'$ that is more popular than $M$. We consider a natural generalization of Popular Matching where every vertex has a weight. Then, we call a matching $M$ more popular than matching $M'$ if the weight of vertices preferring $M$ to $M'$ is larger than the weight of vertices preferring $M'$ to $M$. For this case, we show that it is NP-hard to find a popular matching. Our main result its a polynomial-time algorithm that delivers a popular matching or a proof for it non-existence in instances where all vertices on one side have weight $c > 3$ and all vertices on the other side have weight 1.

We study the decomposition of multivariate polynomials as sums of powers of linear forms. We give a randomized algorithm for the following problem: If a homogeneous polynomial $f \in K[x_1 , . . . , x_n]$ (where $K \subseteq \mathbb{C}$) of degree $d$ is given as a blackbox, decide whether it can be written as a linear combination of $d$-th powers of linearly independent complex linear forms. The main novel features of the algorithm are: (1) For $d = 3$, we improve by a factor of $n$ on the running time from an algorithm by Koiran and Skomra. The price to be paid for this improvement though is that the algorithm now has two-sided error. (2) For $d > 3$, we provide the first randomized blackbox algorithm for this problem that runs in time polynomial in $n$ and $d$ (in an algebraic model where only arithmetic operations and equality tests are allowed). Previous algorithms for this problem as well as most of the existing reconstruction algorithms for other classes appeal to a polynomial factorization subroutine. This requires extraction of complex polynomial roots at unit cost and in standard models such as the unit-cost RAM or the Turing machine this approach does not yield polynomial time algorithms. (3) For $d > 3$, when $f$ has rational coefficients, the running time of the blackbox algorithm is polynomial in $n,d$ and the maximal bit size of any coefficient of $f$. This yields the first algorithm for this problem over $\mathbb{C}$ with polynomial running time in the bit model of computation.

This paper deals with the problem of graph matching or network alignment for Erd\H{o}s--R\'enyi graphs, which can be viewed as a noisy average-case version of the graph isomorphism problem. Let $G$ and $G'$ be $G(n, p)$ Erd\H{o}s--R\'enyi graphs marginally, identified with their adjacency matrices. Assume that $G$ and $G'$ are correlated such that $\mathbb{E}[G_{ij} G'_{ij}] = p(1-\alpha)$. For a permutation $\pi$ representing a latent matching between the vertices of $G$ and $G'$, denote by $G^\pi$ the graph obtained from permuting the vertices of $G$ by $\pi$. Observing $G^\pi$ and $G'$, we aim to recover the matching $\pi$. In this work, we show that for every $\varepsilon \in (0,1]$, there is $n_0>0$ depending on $\varepsilon$ and absolute constants $\alpha_0, R > 0$ with the following property. Let $n \ge n_0$, $(1+\varepsilon) \log n \le np \le n^{\frac{1}{R \log \log n}}$, and $0 < \alpha < \min(\alpha_0,\varepsilon/4)$. There is a polynomial-time algorithm $F$ such that $\mathbb{P}\{F(G^\pi,G')=\pi\}=1-o(1)$. This is the first polynomial-time algorithm that recovers the exact matching between vertices of correlated Erd\H{o}s--R\'enyi graphs with constant correlation with high probability. The algorithm is based on comparison of partition trees associated with the graph vertices.

For a graph whose vertex set is a finite set of points in $\mathbb R^d$, consider the closed (open) balls with diameters induced by its edges. The graph is called a (an open) Tverberg graph if these closed (open) balls intersect. Using the idea of halving lines, we show that (i) for any finite set of points in the plane, there exists a Hamiltonian cycle that is a Tverberg graph; (ii) for any $ n $ red and $ n $ blue points in the plane, there exists a perfect red-blue matching that is a Tverberg graph. Also, we prove that (iii) for any even set of points in $ \mathbb R^d $, there exists a perfect matching that is an open Tverberg graph; (iv) for any $ n $ red and $ n $ blue points in $ \mathbb R^d $, there exists a perfect red-blue matching that is a Tverberg graph.

A directed acyclic graph $G=(V,E)$ is said to be $(e,d)$-depth robust if for every subset $S \subseteq V$ of $|S| \leq e$ nodes the graph $G-S$ still contains a directed path of length $d$. If the graph is $(e,d)$-depth-robust for any $e,d$ such that $e+d \leq (1-\epsilon)|V|$ then the graph is said to be $\epsilon$-extreme depth-robust. In the field of cryptography, (extremely) depth-robust graphs with low indegree have found numerous applications including the design of side-channel resistant Memory-Hard Functions, Proofs of Space and Replication, and in the design of Computationally Relaxed Locally Correctable Codes. In these applications, it is desirable to ensure the graphs are locally navigable, i.e., there is an efficient algorithm $\mathsf{GetParents}$ running in time $\mathrm{polylog} |V|$ which takes as input a node $v \in V$ and returns the set of $v$'s parents. We give the first explicit construction of locally navigable $\epsilon$-extreme depth-robust graphs with indegree $O(\log |V|)$. Previous constructions of $\epsilon$-extreme depth-robust graphs either had indegree $\tilde{\omega}(\log^2 |V|)$ or were not explicit.

Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.

We address the problem of computing a Steiner Arborescence on a directed hypercube. The directed hypercube enjoys a special connectivity structure among its node set $\{0,1\}^m$, but its exponential in $m$ size renders traditional Steiner tree algorithms inefficient. Even though the problem was known to be NP-complete, parameterized complexity of the problem was unknown. With applications in evolutionary tree reconstruction algorithms and incremental algorithms for computing a property on multiple input graphs, any algorithm for this problem would open up new ways to study these applications. In this paper, we present the first algorithms, to the best our knowledge, that prove the problem to be fixed parameter tractable (FPT) wrt two natural parameters -- number of input terminals and penalty of the arborescence. Given any directed $m$-dimensional hypercube, rooted at the zero node, and a set of input terminals $R$ that needs to be spanned by the Steiner arborescence, we prove that the problem is FPT wrt the penalty parameter $q$, by providing a randomized algorithm that computes an optimal arborescence $T$ in $O\left(q^44^{q\left(q+1\right)}+q\left|R\right|m^2\right)$ with probability at least $4^{-q}$. If we trade-off exact solution for an additive approximate one, then we can design a parameterized approximation algorithm with better running time - computing an arborescence $T$ with cost at most $OPT+(\left|R\right|-4)(q_{opt}-1)$ in time $O(\left|R\right|m^2+1.2738^{q_{opt}})$. We also present a dynamic programming algorithm that computes an optimal arborescence in $O(3^{\left|R\right|}\left|R\right|m)$ time, thus proving that the problem is FPT on the parameter $\left|R\right|$.

We propose the inverse problem of Visual question answering (iVQA), and explore its suitability as a benchmark for visuo-linguistic understanding. The iVQA task is to generate a question that corresponds to a given image and answer pair. Since the answers are less informative than the questions, and the questions have less learnable bias, an iVQA model needs to better understand the image to be successful than a VQA model. We pose question generation as a multi-modal dynamic inference process and propose an iVQA model that can gradually adjust its focus of attention guided by both a partially generated question and the answer. For evaluation, apart from existing linguistic metrics, we propose a new ranking metric. This metric compares the ground truth question's rank among a list of distractors, which allows the drawbacks of different algorithms and sources of error to be studied. Experimental results show that our model can generate diverse, grammatically correct and content correlated questions that match the given answer.

北京阿比特科技有限公司