亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A one-dimensional sequence $u_0, u_1, u_2, \ldots \in [0, 1)$ is said to be completely uniformly distributed (CUD) if overlapping $s$-blocks $(u_i, u_{i+1}, \ldots , u_{i+s-1})$, $i = 0, 1, 2, \ldots$, are uniformly distributed for every dimension $s \geq 1$. This concept naturally arises in Markov chain quasi-Monte Carlo (QMC). However, the definition of CUD sequences is not constructive, and thus there remains the problem of how to implement the Markov chain QMC algorithm in practice. Harase (2021) focused on the $t$-value, which is a measure of uniformity widely used in the study of QMC, and implemented short-period Tausworthe generators (i.e., linear feedback shift register generators) over the two-element field $\mathbb{F}_2$ that approximate CUD sequences by running for the entire period. In this paper, we generalize a search algorithm over $\mathbb{F}_2$ to that over arbitrary finite fields $\mathbb{F}_b$ with $b$ elements and conduct a search for Tausworthe generators over $\mathbb{F}_b$ with $t$-values zero (i.e., optimal) for dimension $s = 3$ and small for $s \geq 4$, especially in the case where $b = 3, 4$, and $5$. We provide a parameter table of Tausworthe generators over $\mathbb{F}_4$, and report a comparison between our new generators over $\mathbb{F}_4$ and existing generators over $\mathbb{F}_2$ in numerical examples using Markov chain QMC.

相關內容

It is well known that artificial neural networks initialized from independent and identically distributed priors converge to Gaussian processes in the limit of large number of neurons per hidden layer. In this work we prove an analogous result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain models based on Haar random unitary or orthogonal deep QNNs converge to Gaussian processes in the limit of large Hilbert space dimension $d$. The derivation of this result is more nuanced than in the classical case due the role played by the input states, the measurement observable, and the fact that the entries of unitary matrices are not independent. An important consequence of our analysis is that the ensuing Gaussian processes cannot be used to efficiently predict the outputs of the QNN via Bayesian statistics. Furthermore, our theorems imply that the concentration of measure phenomenon in Haar random QNNs is much worse than previously thought, as we prove that expectation values and gradients concentrate as $\mathcal{O}\left(\frac{1}{e^d \sqrt{d}}\right)$ -- exponentially in the Hilbert space dimension. Finally, we discuss how our results improve our understanding of concentration in $t$-designs.

L-moments are expected values of linear combinations of order statistics that provide robust alternatives to traditional moments. The estimation of parametric models by matching sample L-moments -- a procedure known as ``method of L-moments'' -- has been shown to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments to be used in estimation remains \textit{ad-hoc}, though: researchers typically set the number of L-moments equal to the number of parameters, as to achieve an order condition for identification. This approach is generally inefficient in larger sample sizes. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, we are able to construct an estimator that outperforms MLE in finite samples, and yet does not suffer from efficiency losses asymptotically. We do so by considering a ``generalised'' method of L-moments estimator and deriving its asymptotic properties in a framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a given sample. Monte Carlo evidence shows our proposed approach is able to outperform (in a mean-squared error sense) MLE in smaller samples, whilst working as well as it in larger samples.

The proximal policy optimization (PPO) algorithm stands as one of the most prosperous methods in the field of reinforcement learning (RL). Despite its success, the theoretical understanding of PPO remains deficient. Specifically, it is unclear whether PPO or its optimistic variants can effectively solve linear Markov decision processes (MDPs), which are arguably the simplest models in RL with function approximation. To bridge this gap, we propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback, and establish a $\tilde{\mathcal{O}}(d^{3/4}H^2K^{3/4})$ regret for it. Here $d$ is the ambient dimension of linear MDPs, $H$ is the length of each episode, and $K$ is the number of episodes. Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both stochastic linear MDPs and adversarial linear MDPs with full information. Additionally, our algorithm design features a novel multi-batched updating mechanism and the theoretical analysis utilizes a new covering number argument of value and policy classes, which might be of independent interest.

Local search is a powerful heuristic in optimization and computer science, the complexity of which was studied in the white box and black box models. In the black box model, we are given a graph $G = (V,E)$ and oracle access to a function $f : V \to \mathbb{R}$. The local search problem is to find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few queries as possible. The query complexity is well understood on the grid and the hypercube, but much less is known beyond. We show the query complexity of local search on $d$-regular expanders with constant degree is $\Omega\left(\frac{\sqrt{n}}{\log{n}}\right)$, where $n$ is the number of vertices. This matches within a logarithmic factor the upper bound of $O(\sqrt{n})$ for constant degree graphs from Aldous (1983), implying that steepest descent with a warm start is an essentially optimal algorithm for expanders. The best lower bound known from prior work was $\Omega\left(\frac{\sqrt[8]{n}}{\log{n}}\right)$, shown by Santha and Szegedy (2004) for quantum and randomized algorithms. We obtain this result by considering a broader framework of graph features such as vertex congestion and separation number. We show that for each graph, the randomized query complexity of local search is $\Omega\left(\frac{n^{1.5}}{g}\right)$, where $g$ is the vertex congestion of the graph; and $\Omega\left(\sqrt[4]{\frac{s}{\Delta}}\right)$, where $s$ is the separation number and $\Delta$ is the maximum degree. For separation number the previous bound was $\Omega\left(\sqrt[8]{\frac{s}{\Delta}} /\log{n}\right)$, given by Santha and Szegedy for quantum and randomized algorithms. We also show a variant of the relational adversary method from Aaronson (2006), which is asymptotically at least as strong as the version in Aaronson (2006) for all randomized algorithms and strictly stronger for some problems.

We study the properties of differentiable neural networks activated by rectified power unit (RePU) functions. We show that the partial derivatives of RePU neural networks can be represented by RePUs mixed-activated networks and derive upper bounds for the complexity of the function class of derivatives of RePUs networks. We establish error bounds for simultaneously approximating $C^s$ smooth functions and their derivatives using RePU-activated deep neural networks. Furthermore, we derive improved approximation error bounds when data has an approximate low-dimensional support, demonstrating the ability of RePU networks to mitigate the curse of dimensionality. To illustrate the usefulness of our results, we consider a deep score matching estimator (DSME) and propose a penalized deep isotonic regression (PDIR) using RePU networks. We establish non-asymptotic excess risk bounds for DSME and PDIR under the assumption that the target functions belong to a class of $C^s$ smooth functions. We also show that PDIR has a robustness property in the sense it is consistent with vanishing penalty parameters even when the monotonicity assumption is not satisfied. Furthermore, if the data distribution is supported on an approximate low-dimensional manifold, we show that DSME and PDIR can mitigate the curse of dimensionality.

We propose a superfast method for constructing orthogonal matrices $M\in\mathcal{O}(n,q)$ in finite fields $GF(q)$. It can be used to construct $n\times n$ orthogonal matrices in $Z_p$ with very high values of $n$ and $p$, and also orthogonal matrices with a certain circulant structure. Equally well one can construct paraunitary filter banks or wavelet matrices over finite fields. The construction mechanism is highly efficient, allowing for the complete screening and selection of an orthogonal matrix that meets specific constraints. For instance, one can generate a complete list of orthogonal matrices with given $n$ and $q=p^m$ provided that the order of $\mathcal{O}(n,q)$ is not too large. Although the method is based on randomness, isolated cases of failure can be identified well in advance of the basic procedure's start. The proposed procedures are based on the Janashia-Lagvilava method which was developed for an entirely different task, therefore, it may seem somewhat unexpected.

Grid-free Monte Carlo methods based on the walk on spheres (WoS) algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce the walk on stars (WoSt) algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS with star-shaped domains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail.

External validation is often recommended to ensure the generalizability of ML models. However, it neither guarantees generalizability nor equates to a model's clinical usefulness (the ultimate goal of any clinical decision-support tool). External validation is misaligned with current healthcare ML needs. First, patient data changes across time, geography, and facilities. These changes create significant volatility in the performance of a single fixed model (especially for deep learning models, which dominate clinical ML). Second, newer ML techniques, current market forces, and updated regulatory frameworks are enabling frequent updating and monitoring of individual deployed model instances. We submit that external validation is insufficient to establish ML models' safety or utility. Proposals to fix the external validation paradigm do not go far enough. Continued reliance on it as the ultimate test is likely to lead us astray. We propose the MLOps-inspired paradigm of recurring local validation as an alternative that ensures the validity of models while protecting against performance-disruptive data variability. This paradigm relies on site-specific reliability tests before every deployment, followed by regular and recurrent checks throughout the life cycle of the deployed algorithm. Initial and recurrent reliability tests protect against performance-disruptive distribution shifts, and concept drifts that jeopardize patient safety.

We consider an atomic congestion game in which each player $i$ either participates in the game with an exogenous and known probability $p_{i}\in(0,1]$, independently of everybody else, or stays out and incurs no cost. We compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior, considering two different notions of a social planner. A prophet planner knows the realization of the random participation in the game; the ordinary planner does not. As a consequence, a prophet planner can compute an adaptive social optimum that selects different solutions depending on the players that turn out to be active, whereas an ordinary planner faces the same uncertainty as the players and can only compute social optima with respect to the player participation distribution. For both planners, we derive the precise price of anarchy, which arises from an optimization problem parameterized by the maximum participation probability $q=\max_{i} p_{i}$. For the case of affine costs, we provide an analytic expression for the ordinary and prophet price of anarchy, parameterized as a function of $q$.

We present a novel linearizable wait-free queue implementation using single-word CAS instructions. Previous lock-free queue implementations from CAS all have amortized step complexity of $\Omega(p)$ per operation in worst-case executions, where $p$ is the number of processes that access the queue. Our new wait-free queue takes $O(\log p)$ steps per enqueue and $O(\log^2 p +\log q)$ steps per dequeue, where $q$ is the size of the queue. A bounded-space version of the implementation has $O(\log p \log(p+q))$ amortized step complexity per operation.

北京阿比特科技有限公司