亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Grid-free Monte Carlo methods based on the walk on spheres (WoS) algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce the walk on stars (WoSt) algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS with star-shaped domains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail.

相關內容

Models with intractable normalizing functions have numerous applications. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. A number of algorithms have been developed for such models. Some have the posterior distribution as their asymptotic distribution. Other ``asymptotically inexact'' algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms. Hence it is very hard to tune them. We propose two new diagnostics that address these problems for intractable normalizing function models. Our first diagnostic, inspired by the second Bartlett identity, is in principle broadly applicable to Monte Carlo approximations beyond the normalizing function problem. We develop an approximate version of this diagnostic that is applicable to intractable normalizing function problems. Our second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods and apply them to several algorithms in challenging simulated and real data examples including an Ising model, an exponential random graph model, and a Conway--Maxwell--Poisson regression model, obtaining interesting insights about the algorithms in these contexts.

We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_0\times Q_0$, $\textbf{BDM}_1\times Q_0$, and $\textbf{RT}_1\times Q_1$. Here $Q_k$ is the space of discontinuous polynomial functions of degree k, $\textbf{RT}_{k}$ is the Raviart-Thomas space, and $\textbf{BDM}_k$ is the Brezzi-Douglas-Marini space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose two corrections to the standard stabilization strategy: using macro-elements and new stabilization terms for the pressure. By decomposing the computational mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is active only where needed. By modifying the standard stabilization terms for the pressure we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We derive a priori error estimates for the proposed unfitted finite element discretization based on $\textbf{RT}_k\times Q_k$, $k\geq 0$. Numerical experiments indicate that with the new method we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.

Our goal is to produce methods for observational causal inference that are auditable, easy to troubleshoot, accurate for treatment effect estimation, and scalable to high-dimensional data. We describe a general framework called Model-to-Match that achieves these goals by (i) learning a distance metric via outcome modeling, (ii) creating matched groups using the distance metric, and (iii) using the matched groups to estimate treatment effects. Model-to-Match uses variable importance measurements to construct a distance metric, making it a flexible framework that can be adapted to various applications. Concentrating on the scalability of the problem in the number of potential confounders, we operationalize the Model-to-Match framework with LASSO. We derive performance guarantees for settings where LASSO outcome modeling consistently identifies all confounders (importantly without requiring the linear model to be correctly specified). We also provide experimental results demonstrating the method's auditability, accuracy, and scalability as well as extensions to more general nonparametric outcome modeling.

We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index Sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE$^{-1}$ as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.

In this paper, we consider the finite element approximation to a parabolic Dirichlet boundary control problem and establish new a priori error estimates. In the temporal semi-discretization we apply the DG(0) method for the state and the variational discretization for the control, and obtain the convergence rates $O(k^{\frac{1}{4}})$ and $O(k^{\frac{3}{4}-\varepsilon})$ $(\varepsilon>0)$ for the control for problems posed on polytopes with $y_0\in L^2(\Omega)$, $y_d\in L^2(I;L^2(\Omega))$ and smooth domains with $y_0\in H^{\frac{1}{2}}(\Omega)$, $y_d\in L^2(I;H^1(\Omega))\cap H^{\frac{1}{2}}(I;L^2(\Omega))$, respectively. In the fully discretization of the optimal control problem posed on polytopal domains, we apply the DG(0)-CG(1) method for the state and the variational discretization approach for the control, and derive the convergence order $O(k^{\frac{1}{4}} +h^{\frac{1}{2}})$, which improves the known results by removing the mesh size condition $k=O(h^2)$ between the space mesh size $h$ and the time step $k$. As a byproduct, we obtain a priori error estimate $O(h+k^{1\over 2})$ for the fully discretization of parabolic equations with inhomogeneous Dirichlet data posed on polytopes, which also improves the known error estimate by removing the above mesh size condition.

We revisit the problem of spurious modes that are sometimes encountered in partial differential equations discretizations. It is generally suspected that one of the causes for spurious modes is due to how boundary conditions are treated, and we use this as the starting point of our investigations. By regarding boundary conditions as algebraic constraints on a differential equation, we point out that any differential equation with homogeneous boundary conditions also admits a typically infinite number of hidden or implicit boundary conditions. In most discretization schemes, these additional implicit boundary conditions are violated, and we argue that this is what leads to the emergence of spurious modes. These observations motivate two definitions of the quality of computed eigenvalues based on violations of derivatives of boundary conditions on the one hand, and on the Grassmann distance between subspaces associated with computed eigenspaces on the other. Both of these tests are based on a standardized treatment of boundary conditions and do not require a priori knowledge of eigenvalue locations. The effectiveness of these tests is demonstrated on several examples known to have spurious modes. In addition, these quality tests show that in most problems, about half the computed spectrum of a differential operator is of low quality. The tests also specifically identify the low accuracy modes, which can then be projected out as a type of model reduction scheme.

This article proposes a new information theoretic necessary condition for reconstructing a discrete random variable $X$ based on the knowledge of a set of discrete functions of $X$. The reconstruction condition is derived from the Shannon's Lattice of Information (LoI) \cite{Shannon53} and two entropic metrics proposed respectively by Shannon and Rajski. This theoretical material being relatively unknown and/or dispersed in different references, we provide a complete and synthetic description of the LoI concepts like the total, common and complementary informations with complete proofs. The two entropic metrics definitions and properties are also fully detailled and showed compatible with the LoI structure. A new geometric interpretation of the Lattice structure is then investigated that leads to a new necessary condition for reconstructing the discrete random variable $X$ given a set $\{ X_0$,...,$X_{n-1} \}$ of elements of the lattice generated by $X$. Finally, this condition is derived in five specific examples of reconstruction of $X$ from a set of deterministic functions of $X$: the reconstruction of a symmetric random variable from the knowledge of its sign and of its absolute value, the reconstruction of a binary word from a set of binary linear combinations, the reconstruction of an integer from its prime signature (Fundamental theorem of arithmetics) and from its reminders modulo a set of coprime integers (Chinese reminder theorem), and the reconstruction of the sorting permutation of a list from a set of 2-by-2 comparisons. In each case, the necessary condition is shown compatible with the corresponding well-known results.

Our research focuses on the development of domain decomposition preconditioners tailored for second-order elliptic partial differential equations. Our approach addresses two major challenges simultaneously: i) effectively handling coefficients with high-contrast and multiscale properties, and ii) accommodating irregular domains in the original problem, the coarse mesh, and the subdomain partition. The robustness of our preconditioners is crucial for real-world applications, such as the efficient and accurate modeling of subsurface flow in porous media and other important domains. The core of our method lies in the construction of a suitable partition of unity functions and coarse spaces utilizing local spectral information. Leveraging these components, we implement a two-level additive Schwarz preconditioner. We demonstrate that the condition number of the preconditioned systems is bounded with a bound that is independent of the contrast. Our claims are further substantiated through selected numerical experiments, which confirm the robustness of our preconditioners.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司