We address the problem of mechanism design for two-stage repeated stochastic games -- a novel setting using which many emerging problems in next-generation electricity markets can be readily modeled. Repeated playing affords the players a large class of strategies that adapt a player's actions to all past observations and inferences obtained therefrom. In other settings such as iterative auctions or dynamic games where a large strategy space of this sort manifests, it typically has an important implication for mechanism design: It may be impossible to obtain truth-telling as a dominant strategy equilibrium. Consequently, in such scenarios, it is common to settle for mechanisms that render truth-telling only a Nash equilibrium, or variants thereof, even though Nash equilibria are known to be poor models of real-world behavior. This is owing to each player having to make overly specific assumptions about the behaviors of the other players to employ their Nash equilibrium strategy, which they may not make. In general, the lesser the burden of speculation in an equilibrium, the more plausible it is that it models real-world behavior. Guided by this maxim, we introduce a new notion of equilibrium called Dominant Strategy Non-Bankrupting Equilibrium (DNBE) which requires the players to make very little assumptions about the behavior of the other players to employ their equilibrium strategy. Consequently, a mechanism that renders truth-telling a DNBE as opposed to only a Nash equilibrium could be quite effective in molding real-world behavior along truthful lines. We present a mechanism for two-stage repeated stochastic games that renders truth-telling a Dominant Strategy Non-Bankrupting Equilibrium. The mechanism also guarantees individual rationality and maximizes social welfare. Finally, we describe an application of the mechanism to design demand response markets.
We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must select a batch of arms, each characterized by its own context, that would allow it to both maximize reward and maintain an accurate (ideally unbiased) population estimate of the reward. This setting is inherent to many public and private sector applications and often requires handling delayed feedback, small data, and distribution shifts. We demonstrate its importance on real data from the United States Internal Revenue Service (IRS). The IRS performs yearly audits of the tax base. Two of its most important objectives are to identify suspected misreporting and to estimate the "tax gap" -- the global difference between the amount paid and true amount owed. Based on a unique collaboration with the IRS, we cast these two processes as a unified optimize-and-estimate structured bandit. We analyze optimize-and-estimate approaches to the IRS problem and propose a novel mechanism for unbiased population estimation that achieves rewards comparable to baseline approaches. This approach has the potential to improve audit efficacy, while maintaining policy-relevant estimates of the tax gap. This has important social consequences given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that this problem setting is fertile ground for further research and we highlight its interesting challenges. The results of this and related research are currently being incorporated into the continual improvement of the IRS audit selection methods.
The ability of snapshot compressive imaging (SCI) systems to efficiently capture high-dimensional (HD) data has led to an inverse problem, which consists of recovering the HD signal from the compressed and noisy measurement. While reconstruction algorithms grow fast to solve it with the recent advances of deep learning, the fundamental issue of accurate and stable recovery remains. To this end, we propose deep equilibrium models (DEQ) for video SCI, fusing data-driven regularization and stable convergence in a theoretically sound manner. Each equilibrium model implicitly learns a nonexpansive operator and analytically computes the fixed point, thus enabling unlimited iterative steps and infinite network depth with only a constant memory requirement in training and testing. Specifically, we demonstrate how DEQ can be applied to two existing models for video SCI reconstruction: recurrent neural networks (RNN) and Plug-and-Play (PnP) algorithms. On a variety of datasets and real data, both quantitative and qualitative evaluations of our results demonstrate the effectiveness and stability of our proposed method. The code and models are available at: //github.com/IndigoPurple/DEQSCI .
Claim frequency data in insurance records the number of claims on insurance policies during a finite period of time. Given that insurance companies operate with multiple lines of insurance business where the claim frequencies on different lines of business are often correlated, multivariate count modeling with dependence for claim frequency is therefore essential. Due in part to the operation of bonus-malus systems, claims data in automobile insurance are often characterized by an excess of common zeros. This feature is referred to as multivariate zero-inflation. In this paper, we establish two ways of dealing with this feature. The first is to use a multivariate zero-inflated model, where we artificially augment the probability of common zeros based on standard multivariate count distributions. The other is to apply a multivariate zero-modified model, which deals with the common zeros and the number of claims incurred in each line, given that at least one claim occurs separately. A comprehensive comparative analysis of several models under these two frameworks is conducted using the data of an automobile insurance portfolio from a major insurance company in Spain. A less common situation in insurance is the absence of some common zeros resulting from incomplete records. This feature of these data is known as multivariate zero-deflation. In this case, our proposed multivariate zero-modified model still works, as shown by the second empirical study.
For common notions of correlated equilibrium in extensive-form games, computing an optimal (e.g., welfare-maximizing) equilibrium is NP-hard. Other equilibrium notions -- communication (Forges 1986) and certification (Forges & Koessler 2005) equilibria -- augment the game with a mediator that has the power to both send and receive messages to and from the players -- and, in particular, to remember the messages. In this paper, we investigate both notions in extensive-form games from a computational lens. We show that optimal equilibria in both notions can be computed in polynomial time, the latter under a natural additional assumption known in the literature. Our proof works by constructing a mediator-augmented game of polynomial size that explicitly represents the mediator's decisions and actions. Our framework allows us to define an entire family of equilibria by varying the mediator's information partition, the players' ability to lie, and the players' ability to deviate. From this perspective, we show that other notions of equilibrium, such as extensive-form correlated equilibrium, correspond to the mediator having imperfect recall. This shows that, at least among all these equilibrium notions, the hardness of computation is driven by the mediator's imperfect recall. As special cases of our general construction, we recover 1) the polynomial-time algorithm of Conitzer & Sandholm (2004) for automated mechanism design in Bayes-Nash equilibria and 2) the correlation DAG algorithm of Zhang et al (2022) for optimal correlation. Our algorithm is especially scalable when the equilibrium notion is what we define as the full-certification equilibrium, where players cannot lie about their information but they can be silent. We back up our theoretical claims with experiments on a suite of standard benchmark games.
Graph Neural Networks (GNNs) have been predominant for graph learning tasks; however, recent studies showed that a well-known graph algorithm, Label Propagation (LP), combined with a shallow neural network can achieve comparable performance to GNNs in semi-supervised node classification on graphs with high homophily. In this paper, we show that this approach falls short on graphs with low homophily, where nodes often connect to the nodes of the opposite classes. To overcome this, we carefully design a combination of a base predictor with LP algorithm that enjoys a closed-form solution as well as convergence guarantees. Our algorithm first learns the class compatibility matrix and then aggregates label predictions using LP algorithm weighted by class compatibilities. On a wide variety of benchmarks, we show that our approach achieves the leading performance on graphs with various levels of homophily. Meanwhile, it has orders of magnitude fewer parameters and requires less execution time. Empirical evaluations demonstrate that simple adaptations of LP can be competitive in semi-supervised node classification in both homophily and heterophily regimes.
In recent years, empirical game-theoretic analysis (EGTA) has emerged as a powerful tool for analyzing games in which an exact specification of the utilities is unavailable. Instead, EGTA assumes access to an oracle, i.e., a simulator, which can generate unbiased noisy samples of players' unknown utilities, given a strategy profile. Utilities can thus be empirically estimated by repeatedly querying the simulator. Recently, various progressive sampling (PS) algorithms have been proposed, which aim to produce PAC-style learning guarantees (e.g., approximate Nash equilibria with high probability) using as few simulator queries as possible. One recent work introduces a pruning technique called regret-pruning which further minimizes the number of simulator queries placed in PS algorithms which aim to learn pure Nash equilibria. In this paper, we address a serious limitation of this original regret pruning approach -- it is only able to guarantee that true pure Nash equilibria of the empirical game are approximate equilibria of the true game, and is unable to provide any strong guarantees regarding the efficacy of approximate pure Nash equilibria. This is a significant limitation since in many games, pure Nash equilibria are computationally intractable to find, or even non-existent. We introduce three novel regret pruning variations. The first two variations generalize the original regret pruning approach to yield guarantees for approximate pure Nash equilibria of the empirical game. The third variation goes further to even yield strong guarantees for all approximate mixed Nash equilibria of the empirical game. We use these regret pruning variations to design two novel progressive sampling algorithms, PS-REG+ and PS-REG-M, which experimentally outperform the previous state-of-the-art algorithms for learning pure and mixed equilibria, respectively, of simulation-based games.
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.