亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For common notions of correlated equilibrium in extensive-form games, computing an optimal (e.g., welfare-maximizing) equilibrium is NP-hard. Other equilibrium notions -- communication (Forges 1986) and certification (Forges & Koessler 2005) equilibria -- augment the game with a mediator that has the power to both send and receive messages to and from the players -- and, in particular, to remember the messages. In this paper, we investigate both notions in extensive-form games from a computational lens. We show that optimal equilibria in both notions can be computed in polynomial time, the latter under a natural additional assumption known in the literature. Our proof works by constructing a mediator-augmented game of polynomial size that explicitly represents the mediator's decisions and actions. Our framework allows us to define an entire family of equilibria by varying the mediator's information partition, the players' ability to lie, and the players' ability to deviate. From this perspective, we show that other notions of equilibrium, such as extensive-form correlated equilibrium, correspond to the mediator having imperfect recall. This shows that, at least among all these equilibrium notions, the hardness of computation is driven by the mediator's imperfect recall. As special cases of our general construction, we recover 1) the polynomial-time algorithm of Conitzer & Sandholm (2004) for automated mechanism design in Bayes-Nash equilibria and 2) the correlation DAG algorithm of Zhang et al (2022) for optimal correlation. Our algorithm is especially scalable when the equilibrium notion is what we define as the full-certification equilibrium, where players cannot lie about their information but they can be silent. We back up our theoretical claims with experiments on a suite of standard benchmark games.

相關內容

In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.

We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie, Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms. Let $T_1$ and $T_2$ be two rooted trees whose nodes have weights that are increasing in all root-to-leaf paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of nodes $(u, v)\in T_1 \times T_2$ is \emph{induced} if and only if there is a label shared by leaf-descendants of $u$ and $v$. In an HIA query, given nodes $x \in T_1$ and $y \in T_2$, the goal is to find an induced pair of nodes $(u, v)$ of the maximum total weight such that $u$ is an ancestor of~$x$ and $v$ is an ancestor of $y$. Let $n$ be the upper bound on the sizes of the two trees. It is known that no data structure of size $\tilde{\mathcal{O}}(n)$ can answer HIA queries in $o(\log n / \log \log n)$ time [Charalampopoulos, Gawrychowski, Pokorski; ICALP 2020]. This (unconditional) lower bound is a $\operatorname{polyloglog} n$ factor away from the query time of the fastest $\tilde{\mathcal{O}}(n)$-size data structure known to date for the HIA problem [Abedin, Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time complexity of the HIA problem for the near-linear space regime by presenting a data structure that can be built in $\tilde{\mathcal{O}}(n)$ time and answers HIA queries in $\mathcal{O}(\log n/\log\log n)$ time. As a direct corollary, we obtain an $\tilde{\mathcal{O}}(n)$-size data structure that maintains the LCS of a static string and a dynamic string, both of length at most $n$, in time optimal for this space regime. The main ingredients of our approach are fractional cascading and the utilization of an $\mathcal{O}(\log n/ \log\log n)$-depth tree decomposition.

Repeated games consider a situation where multiple agents are motivated by their independent rewards throughout learning. In general, the dynamics of their learning become complex. Especially when their rewards compete with each other like zero-sum games, the dynamics often do not converge to their optimum, i.e., Nash equilibrium. To tackle such complexity, many studies have understood various learning algorithms as dynamical systems and discovered qualitative insights among the algorithms. However, such studies have yet to handle multi-memory games (where agents can memorize actions they played in the past and choose their actions based on their memories), even though memorization plays a pivotal role in artificial intelligence and interpersonal relationship. This study extends two major learning algorithms in games, i.e., replicator dynamics and gradient ascent, into multi-memory games. Then, we prove their dynamics are identical. Furthermore, theoretically and experimentally, we clarify that the learning dynamics diverge from the Nash equilibrium in multi-memory zero-sum games and reach heteroclinic cycles (sojourn longer around the boundary of the strategy space), providing a fundamental advance in learning in games.

We introduce a new stochastic algorithm for solving entropic optimal transport (EOT) between two absolutely continuous probability measures $\mu$ and $\nu$. Our work is motivated by the specific setting of Monge-Kantorovich quantiles where the source measure $\mu$ is either the uniform distribution on the unit hypercube or the spherical uniform distribution. Using the knowledge of the source measure, we propose to parametrize a Kantorovich dual potential by its Fourier coefficients. In this way, each iteration of our stochastic algorithm reduces to two Fourier transforms that enables us to make use of the Fast Fourier Transform (FFT) in order to implement a fast numerical method to solve EOT. We study the almost sure convergence of our stochastic algorithm that takes its values in an infinite-dimensional Banach space. Then, using numerical experiments, we illustrate the performances of our approach on the computation of regularized Monge-Kantorovich quantiles. In particular, we investigate the potential benefits of entropic regularization for the smooth estimation of multivariate quantiles using data sampled from the target measure $\nu$.

This paper considers Bayesian persuasion for routing games where information about the uncertain state of the network is provided by a traffic information system (TIS) using public signals. In this setup, the TIS commits to a signalling scheme and participants form a posterior belief about the state of the network based on prior beliefs and the received signal. They subsequently select routes minimizing their individual expected travel time under their posterior beliefs, giving rise to a Wardrop equilibrium. We investigate how the TIS can infer the prior beliefs held by the participants by designing suitable signalling schemes, and observing the equilibrium flows under different signals. We show that under mild conditions a signalling scheme that allows for exact inference of the prior exists. We then provide an iterative algorithm that finds such a scheme in a finite number of steps. We show that schemes designed by our algorithm are robust, in the sense that they can still identify the prior after a small enough perturbation. We also investigate the case where the population is divided among multiple priors, and give conditions under which the fraction associated to each prior can be identified. Several examples illustrate our results.

In this paper, we build on using the class of f-divergence induced coherent risk measures for portfolio optimization and derive its necessary optimality conditions formulated in CAPM format. We have derived a new f-Beta similar to the Standard Betas and previous works in Drawdown Betas. The f-Beta evaluates portfolio performance under an optimally perturbed market probability measure and this family of Beta metrics gives various degrees of flexibility and interpretability. We conducted numerical experiments using DOW 30 stocks against a chosen market portfolio as the optimal portfolio to demonstrate the new perspectives provided by Hellinger-Beta as compared with Standard Beta and Drawdown Betas, based on choosing square Hellinger distance to be the particular choice of f-divergence function in the general f-divergence induced risk measures and f-Betas. We calculated Hellinger-Beta metrics based on deviation measures and further extended this approach to calculate Hellinger-Betas based on drawdown measures, resulting in another new metric which we termed Hellinger-Drawdown Beta. We compared the resulting Hellinger-Beta values under various choices of the risk aversion parameter to study their sensitivity to increasing stress levels.

In this paper we characterise the long-run behaviour of the replicator dynamic in two-player zero-sum games (symmetric or otherwise). Specifically, we prove that every zero-sum game possesses a unique global attractor, which we then characterise. Most surprisingly, this attractor depends only on each player's preference order over their own strategies and not on the cardinal payoff values. Consequently, it is structurally stable. The attractor is defined by a finite directed graph we call the game's fundamental graph. If the game is symmetric, this graph is a tournament whose nodes are strategies; if the game is not symmetric, this graph is the game's response graph. In both cases the attractor can be computed in time quasilinear in the size of the game. We discuss the consequences of our results on chain recurrence and equilibria in games.

Large-scale, two-sided matching platforms must find market outcomes that align with user preferences while simultaneously learning these preferences from data. Classical notions of stability (Gale and Shapley, 1962; Shapley and Shubik, 1971) are unfortunately of limited value in the learning setting, given that preferences are inherently uncertain and destabilizing while they are being learned. To bridge this gap, we develop a framework and algorithms for learning stable market outcomes under uncertainty. Our primary setting is matching with transferable utilities, where the platform both matches agents and sets monetary transfers between them. We design an incentive-aware learning objective that captures the distance of a market outcome from equilibrium. Using this objective, we analyze the complexity of learning as a function of preference structure, casting learning as a stochastic multi-armed bandit problem. Algorithmically, we show that "optimism in the face of uncertainty," the principle underlying many bandit algorithms, applies to a primal-dual formulation of matching with transfers and leads to near-optimal regret bounds. Our work takes a first step toward elucidating when and how stable matchings arise in large, data-driven marketplaces.

Approximate Message Passing (AMP) algorithms are a class of iterative procedures for computationally-efficient estimation in high-dimensional inference and estimation tasks. Due to the presence of an 'Onsager' correction term in its iterates, for $N \times M$ design matrices $\mathbf{A}$ with i.i.d. Gaussian entries, the asymptotic distribution of the estimate at any iteration of the algorithm can be exactly characterized in the large system limit as $M/N \rightarrow \delta \in (0, \infty)$ via a scalar recursion referred to as state evolution. In this paper, we show that appropriate functionals of the iterates, in fact, concentrate around their limiting values predicted by these asymptotic distributions with rates exponentially fast in $N$ for a large class of AMP-style algorithms, including those that are used when high-dimensional generalized linear regression models are assumed to be the data-generating process, like the generalized AMP algorithm, or those that are used when the measurement matrix is assumed to be right rotationally invariant instead of i.i.d. Gaussian, like vector AMP and generalized vector AMP. In practice, these more general AMP algorithms have many applications, for example in in communications or imaging, and this work provides the first study of finite sample behavior of such algorithms.

Safety in the automotive domain is a well-known topic, which has been in constant development in the past years. The complexity of new systems that add more advanced components in each function has opened new trends that have to be covered from the safety perspective. In this case, not only specifications and requirements have to be covered but also scenarios, which cover all relevant information of the vehicle environment. Many of them are not yet still sufficient defined or considered. In this context, Safety of the Intended Functionality (SOTIF) appears to ensure the system when it might fail because of technological shortcomings or misuses by users. An identification of the plausibly insufficiencies of ADAS/ADS functions has to be done to discover the potential triggering conditions that can lead to these unknown scenarios, which might effect a hazardous behaviour. The main goal of this publication is the definition of an use case to identify these triggering conditions that have been applied to the collision avoidance function implemented in our self-developed mobile Hardware-in-Loop (HiL) platform.

北京阿比特科技有限公司