亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers Bayesian persuasion for routing games where information about the uncertain state of the network is provided by a traffic information system (TIS) using public signals. In this setup, the TIS commits to a signalling scheme and participants form a posterior belief about the state of the network based on prior beliefs and the received signal. They subsequently select routes minimizing their individual expected travel time under their posterior beliefs, giving rise to a Wardrop equilibrium. We investigate how the TIS can infer the prior beliefs held by the participants by designing suitable signalling schemes, and observing the equilibrium flows under different signals. We show that under mild conditions a signalling scheme that allows for exact inference of the prior exists. We then provide an iterative algorithm that finds such a scheme in a finite number of steps. We show that schemes designed by our algorithm are robust, in the sense that they can still identify the prior after a small enough perturbation. We also investigate the case where the population is divided among multiple priors, and give conditions under which the fraction associated to each prior can be identified. Several examples illustrate our results.

相關內容

Category-level 6D pose estimation aims to predict the poses and sizes of unseen objects from a specific category. Thanks to prior deformation, which explicitly adapts a category-specific 3D prior (i.e., a 3D template) to a given object instance, prior-based methods attained great success and have become a major research stream. However, obtaining category-specific priors requires collecting a large amount of 3D models, which is labor-consuming and often not accessible in practice. This motivates us to investigate whether priors are necessary to make prior-based methods effective. Our empirical study shows that the 3D prior itself is not the credit to the high performance. The keypoint actually is the explicit deformation process, which aligns camera and world coordinates supervised by world-space 3D models (also called canonical space). Inspired by these observation, we introduce a simple prior-free implicit space transformation network, namely IST-Net, to transform camera-space features to world-space counterparts and build correspondence between them in an implicit manner without relying on 3D priors. Besides, we design camera- and world-space enhancers to enrich the features with pose-sensitive information and geometrical constraints, respectively. Albeit simple, IST-Net becomes the first prior-free method that achieves state-of-the-art performance, with top inference speed on the REAL275 dataset. Our code and models will be publicly available.

Partial-label learning (PLL) is an important weakly supervised learning problem, which allows each training example to have a candidate label set instead of a single ground-truth label. Identification-based methods have been widely explored to tackle label ambiguity issues in PLL, which regard the true label as a latent variable to be identified. However, identifying the true labels accurately and completely remains challenging, causing noise in pseudo labels during model training. In this paper, we propose a new method called CroSel, which leverages historical prediction information from models to identify true labels for most training examples. First, we introduce a cross selection strategy, which enables two deep models to select true labels of partially labeled data for each other. Besides, we propose a novel consistent regularization term called co-mix to avoid sample waste and tiny noise caused by false selection. In this way, CroSel can pick out the true labels of most examples with high precision. Extensive experiments demonstrate the superiority of CroSel, which consistently outperforms previous state-of-the-art methods on benchmark datasets. Additionally, our method achieves over 90\% accuracy and quantity for selecting true labels on CIFAR-type datasets under various settings.

Finding the initial conditions that led to the current state of the universe is challenging because it involves searching over a vast input space of initial conditions, along with modeling their evolution via tools such as N-body simulations which are computationally expensive. Deep learning has emerged as an alternate modeling tool that can learn the mapping between the linear input of an N-body simulation and the final nonlinear displacements at redshift zero, which can significantly accelerate the forward modeling. However, this does not help reduce the search space for initial conditions. In this paper, we demonstrate for the first time that a deep learning model can be trained for the reverse mapping. We train a V-Net based convolutional neural network, which outputs the linear displacement of an N-body system, given the current time nonlinear displacement and the cosmological parameters of the system. We demonstrate that this neural network accurately recovers the initial linear displacement field over a wide range of scales ($<1$-$2\%$ error up to nearly $k = 1\ \mathrm{Mpc}^{-1}\,h$), despite the ill-defined nature of the inverse problem at smaller scales. Specifically, smaller scales are dominated by nonlinear effects which makes the backward dynamics much more susceptible to numerical and computational errors leading to highly divergent backward trajectories and a one-to-many backward mapping. The results of our method motivate that neural network based models can act as good approximators of the initial linear states and their predictions can serve as good starting points for sampling-based methods to infer the initial states of the universe.

Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of optimistic gradient descent (OGD) in time-varying games. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on natural variation measures of the sequence of games, subsuming known results for static games. Furthermore, we establish improved second-order variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also apply to time-varying general-sum multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games.

The aim of this paper is twofold. Based on the geometric Wasserstein tangent space, we first introduce Wasserstein steepest descent flows. These are locally absolutely continuous curves in the Wasserstein space whose tangent vectors point into a steepest descent direction of a given functional. This allows the use of Euler forward schemes instead of minimizing movement schemes introduced by Jordan, Kinderlehrer and Otto. For locally Lipschitz continuous functionals which are $\lambda$-convex along generalized geodesics, we show that there exists a unique Wasserstein steepest descent flow which coincides with the Wasserstein gradient flow. The second aim is to study Wasserstein flows of the maximum mean discrepancy with respect to certain Riesz kernels. The crucial part is hereby the treatment of the interaction energy. Although it is not $\lambda$-convex along generalized geodesics, we give analytic expressions for Wasserstein steepest descent flows of the interaction energy starting at Dirac measures. In contrast to smooth kernels, the particle may explode, i.e., a Dirac measure becomes a non-Dirac one. The computation of steepest descent flows amounts to finding equilibrium measures with external fields, which nicely links Wasserstein flows of interaction energies with potential theory. Finally, we provide numerical simulations of Wasserstein steepest descent flows of discrepancies.

The safe deployment of autonomous vehicles relies on their ability to effectively react to environmental changes. This can require maneuvering on varying surfaces which is still a difficult problem, especially for slippery terrains. To address this issue we propose a new approach that learns a surface-aware dynamics model by conditioning it on a latent variable vector storing surface information about the current location. A latent mapper is trained to update these latent variables during inference from multiple modalities on every traversal of the corresponding locations and stores them in a map. By training everything end-to-end with the loss of the dynamics model, we enforce the latent mapper to learn an update rule for the latent map that is useful for the subsequent dynamics model. We implement and evaluate our approach on a real miniature electric car. The results show that the latent map is updated to allow more accurate predictions of the dynamics model compared to a model without this information. We further show that by using this model, the driving performance can be improved on varying and challenging surfaces.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司