This paper introduces a novel Ito diffusion process to model high-frequency financial data, which can accommodate low-frequency volatility dynamics by embedding the discrete-time non-linear exponential GARCH structure with log-integrated volatility in a continuous instantaneous volatility process. The key feature of the proposed model is that, unlike existing GARCH-Ito models, the instantaneous volatility process has a non-linear structure, which ensures that the log-integrated volatilities have the realized GARCH structure. We call this the exponential realized GARCH-Ito (ERGI) model. Given the auto-regressive structure of the log-integrated volatility, we propose a quasi-likelihood estimation procedure for parameter estimation and establish its asymptotic properties. We conduct a simulation study to check the finite sample performance of the proposed model and an empirical study with 50 assets among the S\&P 500 compositions. The numerical studies show the advantages of the new proposed model.
Model development often takes data structure, subject matter considerations, model assumptions, and goodness of fit into consideration. To diagnose issues with any of these factors, it can be helpful to understand regression model estimates at a more granular level. We propose a new method for decomposing point estimates from a regression model via weights placed on data clusters. The weights are informed only by the model specification and data availability and thus can be used to explicitly link the effects of data imbalance and model assumptions to actual model estimates. The weight matrix has been understood in linear models as the hat matrix in the existing literature. We extend it to Bayesian hierarchical regression models that incorporate prior information and complicated dependence structures through the covariance among random effects. We show that the model weights, which we call borrowing factors, generalize shrinkage and information borrowing to all regression models. In contrast, the focus of the hat matrix has been mainly on the diagonal elements indicating the amount of leverage. We also provide metrics that summarize the borrowing factors and are practically useful. We present the theoretical properties of the borrowing factors and associated metrics and demonstrate their usage in two examples. By explicitly quantifying borrowing and shrinkage, researchers can better incorporate domain knowledge and evaluate model performance and the impacts of data properties such as data imbalance or influential points.
A functional dynamic factor model for time-dependent functional data is proposed. We decompose a functional time series into a predictive low-dimensional common component consisting of a finite number of factors and an infinite-dimensional idiosyncratic component that has no predictive power. The conditions under which all model parameters, including the number of factors, become identifiable are discussed. Our identification results lead to a simple-to-use two-stage estimation procedure based on functional principal components. As part of our estimation procedure, we solve the separation problem between the common and idiosyncratic functional components. In particular, we obtain a consistent information criterion that provides joint estimates of the number of factors and dynamic lags of the common component. Finally, we illustrate the applicability of our method in a simulation study and to the problem of modeling and predicting yield curves. In an out-of-sample experiment, we demonstrate that our model performs well compared to the widely used term structure Nelson-Siegel model for yield curves.
One of the fundamental assumptions in stochastic control of continuous time processes is that the dynamics of the underlying (diffusion) process is known. This is, however, usually obviously not fulfilled in practice. On the other hand, over the last decades, a rich theory for nonparametric estimation of the drift (and volatility) for continuous time processes has been developed. The aim of this paper is bringing together techniques from stochastic control with methods from statistics for stochastic processes to find a way to both learn the dynamics of the underlying process and control in a reasonable way at the same time. More precisely, we study a long-term average impulse control problem, a stochastic version of the classical Faustmann timber harvesting problem. One of the problems that immediately arises is an exploration-exploitation dilemma as is well known for problems in machine learning. We propose a way to deal with this issue by combining exploration and exploitation periods in a suitable way. Our main finding is that this construction can be based on the rates of convergence of estimators for the invariant density. Using this, we obtain that the average cumulated regret is of uniform order $O({T^{-1/3}})$.
CRISPR genome engineering and single-cell RNA sequencing have transformed biological discovery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations in individual cells to changes in gene expression and illuminating regulatory networks underlying diseases. Despite their promise, single-cell CRISPR screens present substantial statistical challenges. We demonstrate through theoretical and real data analyses that a standard method for estimation and inference in single-cell CRISPR screens -- "thresholded regression" -- exhibits attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select tuning parameter. To overcome these difficulties, we introduce GLM-EIV ("GLM-based errors-in-variables"), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical errors-in-variables model to responses and noisy predictors that are exponential family-distributed and potentially impacted by the same set of confounding variables. We develop a computational infrastructure to deploy GLM-EIV across tens or hundreds of nodes on clouds (e.g., Microsoft Azure) and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two recent, large-scale, single-cell CRISPR screen datasets, demonstrating improved performance in challenging problem settings.
Molecular graph generation is a fundamental problem for drug discovery and has been attracting growing attention. The problem is challenging since it requires not only generating chemically valid molecular structures but also optimizing their chemical properties in the meantime. Inspired by the recent progress in deep generative models, in this paper we propose a flow-based autoregressive model for graph generation called GraphAF. GraphAF combines the advantages of both autoregressive and flow-based approaches and enjoys: (1) high model flexibility for data density estimation; (2) efficient parallel computation for training; (3) an iterative sampling process, which allows leveraging chemical domain knowledge for valency checking. Experimental results show that GraphAF is able to generate 68% chemically valid molecules even without chemical knowledge rules and 100% valid molecules with chemical rules. The training process of GraphAF is two times faster than the existing state-of-the-art approach GCPN. After fine-tuning the model for goal-directed property optimization with reinforcement learning, GraphAF achieves state-of-the-art performance on both chemical property optimization and constrained property optimization.
Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model.
Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In this paper, we present several new results around DTMs. First, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs). This allows us to explore topics that develop smoothly over time, that have a long-term memory or are temporally concentrated (for event detection). Second, we show how to perform scalable approximate inference in these models based on ideas around stochastic variational inference and sparse Gaussian processes. This way we can train a rich family of DTMs to massive data. Our experiments on several large-scale datasets show that our generalized model allows us to find interesting patterns that were not accessible by previous approaches.
Recurrent models for sequences have been recently successful at many tasks, especially for language modeling and machine translation. Nevertheless, it remains challenging to extract good representations from these models. For instance, even though language has a clear hierarchical structure going from characters through words to sentences, it is not apparent in current language models. We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space. In order to propagate gradients though this discrete representation we introduce an improved semantic hashing technique. We show that this technique performs well on a newly proposed quantitative efficiency measure. We also analyze latent codes produced by the model showing how they correspond to words and phrases. Finally, we present an application of the autoencoder-augmented model to generating diverse translations.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.
In this paper, we develop the continuous time dynamic topic model (cDTM). The cDTM is a dynamic topic model that uses Brownian motion to model the latent topics through a sequential collection of documents, where a "topic" is a pattern of word use that we expect to evolve over the course of the collection. We derive an efficient variational approximate inference algorithm that takes advantage of the sparsity of observations in text, a property that lets us easily handle many time points. In contrast to the cDTM, the original discrete-time dynamic topic model (dDTM) requires that time be discretized. Moreover, the complexity of variational inference for the dDTM grows quickly as time granularity increases, a drawback which limits fine-grained discretization. We demonstrate the cDTM on two news corpora, reporting both predictive perplexity and the novel task of time stamp prediction.