亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research introduces a novel application of a masked Proximal Policy Optimization (PPO) algorithm from the field of deep reinforcement learning (RL), for determining the most efficient sequence of space debris visitation, utilizing the Lambert solver as per Izzo's adaptation for individual rendezvous. The aim is to optimize the sequence in which all the given debris should be visited to get the least total time for rendezvous for the entire mission. A neural network (NN) policy is developed, trained on simulated space missions with varying debris fields. After training, the neural network calculates approximately optimal paths using Izzo's adaptation of Lambert maneuvers. Performance is evaluated against standard heuristics in mission planning. The reinforcement learning approach demonstrates a significant improvement in planning efficiency by optimizing the sequence for debris rendezvous, reducing the total mission time by an average of approximately {10.96\%} and {13.66\%} compared to the Genetic and Greedy algorithms, respectively. The model on average identifies the most time-efficient sequence for debris visitation across various simulated scenarios with the fastest computational speed. This approach signifies a step forward in enhancing mission planning strategies for space debris clearance.

相關內容

We present multimodal neural posterior estimation (MultiNPE), a method to integrate heterogeneous data from different sources in simulation-based inference with neural networks. Inspired by advances in deep fusion, it allows researchers to analyze data from different domains and infer the parameters of complex mathematical models with increased accuracy. We consider three fusion approaches for MultiNPE (early, late, hybrid) and evaluate their performance in three challenging experiments. MultiNPE not only outperforms single-source baselines on a reference task, but also achieves superior inference on scientific models from cognitive neuroscience and cardiology. We systematically investigate the impact of partially missing data on the different fusion strategies. Across our experiments, late and hybrid fusion techniques emerge as the methods of choice for practical applications of multimodal simulation-based inference.

A common way to numerically solve Fokker-Planck equations is the Chang-Cooper method in space combined with one of the Euler methods in time. However, the explicit Euler method is only conditionally positive, leading to severe restrictions on the time step to ensure positivity. On the other hand, the implicit Euler method is robust but nonlinearly implicit. Instead, we propose to combine the Chang-Cooper method with unconditionally positive Patankar-type time integration methods, since they are unconditionally positive, robust for stiff problems, only linearly implicit, and also higher-order accurate. We describe the combined approach, analyse it, and present a relevant numerical example demonstrating advantages compared to schemes proposed in the literature.

Sparse Identification of Nonlinear Dynamical Systems (SINDy) is a powerful tool for the data-driven discovery of governing equations. However, it encounters challenges when modeling complex dynamical systems involving high-order derivatives or discontinuities, particularly in the presence of noise. These limitations restrict its applicability across various fields in applied mathematics and physics. To mitigate these, we propose Laplace-Enhanced SparSe Identification of Nonlinear Dynamical Systems (LES-SINDy). By transforming time-series measurements from the time domain to the Laplace domain using the Laplace transform and integration by parts, LES-SINDy enables more accurate approximations of derivatives and discontinuous terms. It also effectively handles unbounded growth functions and accumulated numerical errors in the Laplace domain, thereby overcoming challenges in the identification process. The model evaluation process selects the most accurate and parsimonious dynamical systems from multiple candidates. Experimental results across diverse ordinary and partial differential equations show that LES-SINDy achieves superior robustness, accuracy, and parsimony compared to existing methods.

We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.

A neural network-based machine learning potential energy surface (PES) expressed in a matrix product operator (NN-MPO) is proposed. The MPO form enables efficient evaluation of high-dimensional integrals that arise in solving the time-dependent and time-independent Schr\"odinger equation and effectively overcomes the so-called curse of dimensionality. This starkly contrasts with other neural network-based machine learning PES methods, such as multi-layer perceptrons (MLPs), where evaluating high-dimensional integrals is not straightforward due to the fully connected topology in their backbone architecture. Nevertheless, the NN-MPO retains the high representational capacity of neural networks. NN-MPO can achieve spectroscopic accuracy with a test mean absolute error (MAE) of 3.03 cm$^{-1}$ for a fully coupled six-dimensional ab initio PES, using only 625 training points distributed across a 0 to 17,000 cm$^{-1}$ energy range. Our Python implementation is available at //github.com/KenHino/Pompon.

We present GoRINNs: numerical analysis-informed neural networks for the solution of inverse problems of non-linear systems of conservation laws. GoRINNs are based on high-resolution Godunov schemes for the solution of the Riemann problem in hyperbolic Partial Differential Equations (PDEs). In contrast to other existing machine learning methods that learn the numerical fluxes of conservative Finite Volume methods, GoRINNs learn the physical flux function per se. Due to their structure, GoRINNs provide interpretable, conservative schemes, that learn the solution operator on the basis of approximate Riemann solvers that satisfy the Rankine-Hugoniot condition. The performance of GoRINNs is assessed via four benchmark problems, namely the Burgers', the Shallow Water, the Lighthill-Whitham-Richards and the Payne-Whitham traffic flow models. The solution profiles of these PDEs exhibit shock waves, rarefactions and/or contact discontinuities at finite times. We demonstrate that GoRINNs provide a very high accuracy both in the smooth and discontinuous regions.

We contribute NeuralSolver, a novel recurrent solver that can efficiently and consistently extrapolate, i.e., learn algorithms from smaller problems (in terms of observation size) and execute those algorithms in large problems. Contrary to previous recurrent solvers, NeuralSolver can be naturally applied in both same-size problems, where the input and output sizes are the same, and in different-size problems, where the size of the input and output differ. To allow for this versatility, we design NeuralSolver with three main components: a recurrent module, that iteratively processes input information at different scales, a processing module, responsible for aggregating the previously processed information, and a curriculum-based training scheme, that improves the extrapolation performance of the method. To evaluate our method we introduce a set of novel different-size tasks and we show that NeuralSolver consistently outperforms the prior state-of-the-art recurrent solvers in extrapolating to larger problems, considering smaller training problems and requiring less parameters than other approaches.

Optimizing black-box functions in high-dimensional search spaces has been known to be challenging for traditional Bayesian Optimization (BO). In this paper, we introduce HiBO, a novel hierarchical algorithm integrating global-level search space partitioning information into the acquisition strategy of a local BO-based optimizer. HiBO employs a search-tree-based global-level navigator to adaptively split the search space into partitions with different sampling potential. The local optimizer then utilizes this global-level information to guide its acquisition strategy towards most promising regions within the search space. A comprehensive set of evaluations demonstrates that HiBO outperforms state-of-the-art methods in high-dimensional synthetic benchmarks and presents significant practical effectiveness in the real-world task of tuning configurations of database management systems (DBMSs).

The remarkable achievements of ChatGPT and GPT-4 have sparked a wave of interest and research in the field of large language models for Artificial General Intelligence (AGI). These models provide us with intelligent solutions that are more similar to human thinking, enabling us to use general artificial intelligence to solve problems in various applications. However, in the field of remote sensing, the scientific literature on the implementation of AGI remains relatively scant. Existing AI-related research primarily focuses on visual understanding tasks while neglecting the semantic understanding of the objects and their relationships. This is where vision-language models excel, as they enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics. Vision-language models can go beyond recognizing the objects in an image and can infer the relationships between them, as well as generate natural language descriptions of the image. This makes them better suited for tasks that require both visual and textual understanding, such as image captioning, text-based image retrieval, and visual question answering. This paper provides a comprehensive review of the research on vision-language models in remote sensing, summarizing the latest progress, highlighting the current challenges, and identifying potential research opportunities. Specifically, we review the application of vision-language models in several mainstream remote sensing tasks, including image captioning, text-based image generation, text-based image retrieval, visual question answering, scene classification, semantic segmentation, and object detection. For each task, we briefly describe the task background and review some representative works. Finally, we summarize the limitations of existing work and provide some possible directions for future development.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

北京阿比特科技有限公司