Retrieval Augmented Generation (RAG) is a common method for integrating external knowledge into pretrained Large Language Models (LLMs) to enhance accuracy and relevancy in question answering (QA) tasks. However, prompt engineering and resource efficiency remain significant bottlenecks in developing optimal and robust RAG solutions for real-world QA applications. Recent studies have shown success in using fine tuning to address these problems; in particular, Retrieval Augmented Fine Tuning (RAFT) applied to smaller 7B models has demonstrated superior performance compared to RAG setups with much larger models such as GPT-3.5. The combination of RAFT with parameter-efficient fine tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), promises an even more efficient solution, yet remains an unexplored area. In this work, we combine RAFT with LoRA to reduce fine tuning and storage requirements and gain faster inference times while maintaining comparable RAG performance. This results in a more compute-efficient RAFT, or CRAFT, which is particularly useful for knowledge-intensive QA tasks in resource-constrained environments where internet access may be restricted and hardware resources limited.
The Health Index (HI) is crucial for evaluating system health and is important for tasks like anomaly detection and Remaining Useful Life (RUL) prediction of safety-critical systems. Real-time, meticulous monitoring of system conditions is essential, especially in manufacturing high-quality and safety-critical components such as spray coatings. However, acquiring accurate health status information (HI labels) in real scenarios can be difficult or costly because it requires continuous, precise measurements that fully capture the system's health. As a result, using datasets from systems run-to-failure, which provide limited HI labels only at the healthy and end-of-life phases, becomes a practical approach. We employ Deep Semi-supervised Anomaly Detection (DeepSAD) embeddings to tackle the challenge of extracting features associated with the system's health state. Additionally, we introduce a diversity loss to further enrich the DeepSAD embeddings. We also propose applying an alternating projection algorithm with isotonic constraints to transform the embedding into a normalized HI with an increasing trend. Validation on the PHME2010 milling dataset, a recognized benchmark with ground truth HIs, confirms the efficacy of our proposed HI estimations. Our methodology is further applied to monitor the wear states of thermal spray coatings using high-frequency voltage. These contributions facilitate more accessible and reliable HI estimation, particularly in scenarios where obtaining ground truth HI labels is impossible.
Vehicle-to-Everything (V2X) communication, which includes Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-to-Pedestrian (V2P) networks, is gaining significant attention due to the rise of connected and autonomous vehicles. V2X systems require diverse Quality of Service (QoS) provisions, with V2V communication demanding stricter latency and reliability compared to V2I. The 5G New Radio-V2X (NR-V2X) standard addresses these needs using multi-numerology Orthogonal Frequency Division Multiple Access (OFDMA), which allows for flexible allocation of radio resources. However, V2I and V2V users sharing the same radio resources leads to interference, necessitating efficient power and resource allocation. In this work, we propose a novel resource allocation and sharing algorithm for 5G-based V2X systems. Our approach first groups Resource Blocks (RBs) into Resource Chunks (RCs) and allocates them to V2I users using the Gale-Shapley stable matching algorithm. Power is then allocated to RCs to facilitate efficient resource sharing between V2I and V2V users through a bisection search method. Finally, the Gale-Shapley algorithm is used to pair V2I and V2V users, maintaining low computational complexity while ensuring high performance. Simulation results demonstrate that our proposed Gale-Shapley Resource Allocation with Gale-Shapley Sharing (GSRAGS) achieves competitive performance with lower complexity compared to existing works while effectively meeting the QoS demands of V2X communication systems.
Large Language Models (LLMs) have excelled in multi-hop question-answering (M-QA) due to their advanced reasoning abilities. However, the impact of the inherent reasoning structures on LLM M-QA performance remains unclear, largely due to the absence of QA datasets that provide fine-grained reasoning structures. To address this gap, we introduce the Graph Reasoning-Structured Question Answering Dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs. Unlike existing M-QA datasets, where different reasoning structures are entangled together, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs, where nodes represent textual contexts and edges denote logical flows. These reasoning graphs of different structures enable a fine-grained evaluation of LLM reasoning capabilities across various reasoning structures. Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures. This finding facilitates the exploration of textual structures as compared with semantics.
Neural Radiance Fields (NeRF) have demonstrated exceptional capabilities in reconstructing complex scenes with high fidelity. However, NeRF's view dependency can only handle low-frequency reflections. It falls short when handling complex planar reflections, often interpreting them as erroneous scene geometries and leading to duplicated and inaccurate scene representations. To address this challenge, we introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections. We query a single radiance field to render the primary color and the source of the reflection. We propose a sparse edge regularization to help utilize the true sources of reflections for rendering planar reflections rather than creating a duplicate along the primary ray at the same depth. As a result, we obtain accurate scene geometry. Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections. Our extensive quantitative and qualitative evaluations of real-world datasets demonstrate our method's enhanced performance in accurately handling reflections.
The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as low bandwidth utilization, semantic ambiguity, and diminished Quality of Experience (QoE). This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) System tailored for the talking-face video communication. Firstly, we introduce a Generative Semantic Extractor (GSE) at the transmitter based on the FunASR model to convert semantically sparse talking-face videos into texts with high information density. Secondly, we establish a private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction, complemented by a joint knowledge base-semantic-channel coding scheme. Finally, at the receiver, we propose a Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video matching the user's timbre. Simulation results demonstrate the feasibility and effectiveness of the proposed LGM-TSC system.
Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities, but they have also been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks. To ensure their responsible deployment in critical applications, it is crucial to understand the safety capabilities and vulnerabilities of LLMs. Previous works mainly focus on jailbreak in single-round dialogue, overlooking the potential jailbreak risks in multi-round dialogues, which are a vital way humans interact with and extract information from LLMs. Some studies have increasingly concentrated on the risks associated with jailbreak in multi-round dialogues. These efforts typically involve the use of manually crafted templates or prompt engineering techniques. However, due to the inherent complexity of multi-round dialogues, their jailbreak performance is limited. To solve this problem, we propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values posed by LLMs. We propose a risk decomposition strategy that distributes risks across multiple rounds of queries and utilizes psychological strategies to enhance attack strength. Extensive experiments show that our proposed method surpasses other attack methods and achieves state-of-the-art attack success rate. We will make the corresponding code and dataset available for future research. The code will be released soon.
Retrieval Augmented Generation (RAG) has emerged as a crucial technique for enhancing the accuracy of Large Language Models (LLMs) by incorporating external information. With the advent of LLMs that support increasingly longer context lengths, there is a growing interest in understanding how these models perform in RAG scenarios. Can these new long context models improve RAG performance? This paper presents a comprehensive study of the impact of increased context length on RAG performance across 20 popular open source and commercial LLMs. We ran RAG workflows while varying the total context length from 2,000 to 128,000 tokens (and 2 million tokens when possible) on three domain-specific datasets, and report key insights on the benefits and limitations of long context in RAG applications. Our findings reveal that while retrieving more documents can improve performance, only a handful of the most recent state of the art LLMs can maintain consistent accuracy at long context above 64k tokens. We also identify distinct failure modes in long context scenarios, suggesting areas for future research.
People with speech disabilities may use speech generating devices to facilitate their speech, aka Augmentative and Alternative Communication (AAC) technology. This technology enables practical conversation; however it remains challenging to deliver expressive and timely comments. In this paper, we study how AAC technology can facilitate such speech, through AI powered interfaces. We focus on the least predictable and most high-paced type: humorous comments. We conducted seven qualitative interviews with people with speech disabilities, and performed thematic analysis to gain in-depth insights in usage and challenges of AAC technology, and the role humor plays for them. We designed four simple AI powered interfaces to create humorous comments. In a user study with five participants with speech disabilities, these interfaces allowed us to study how to best support making well-timed humorous comments. We conclude with a discussion of recommendations for interface design based on both studies.
Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.