亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate transfer learning in partially observable contextual bandits, where agents have limited knowledge from other agents and partial information about hidden confounders. We first convert the problem to identifying or partially identifying causal effects between actions and rewards through optimization problems. To solve these optimization problems, we discretize the original functional constraints of unknown distributions into linear constraints, and sample compatible causal models via sequentially solving linear programmings to obtain causal bounds with the consideration of estimation error. Our sampling algorithms provide desirable convergence results for suitable sampling distributions. We then show how causal bounds can be applied to improving classical bandit algorithms and affect the regrets with respect to the size of action sets and function spaces. Notably, in the task with function approximation which allows us to handle general context distributions, our method improves the order dependence on function space size compared with previous literatures. We formally prove that our causally enhanced algorithms outperform classical bandit algorithms and achieve orders of magnitude faster convergence rates. Finally, we perform simulations that demonstrate the efficiency of our strategy compared to the current state-of-the-art methods. This research has the potential to enhance the performance of contextual bandit agents in real-world applications where data is scarce and costly to obtain.

相關內容

In this paper, we study the design and analysis of experiments conducted on a set of units over multiple time periods where the starting time of the treatment may vary by unit. The design problem involves selecting an initial treatment time for each unit in order to most precisely estimate both the instantaneous and cumulative effects of the treatment. We first consider non-adaptive experiments, where all treatment assignment decisions are made prior to the start of the experiment. For this case, we show that the optimization problem is generally NP-hard, and we propose a near-optimal solution. Under this solution, the fraction entering treatment each period is initially low, then high, and finally low again. Next, we study an adaptive experimental design problem, where both the decision to continue the experiment and treatment assignment decisions are updated after each period's data is collected. For the adaptive case, we propose a new algorithm, the Precision-Guided Adaptive Experiment (PGAE) algorithm, that addresses the challenges at both the design stage and at the stage of estimating treatment effects, ensuring valid post-experiment inference accounting for the adaptive nature of the design. Using realistic settings, we demonstrate that our proposed solutions can reduce the opportunity cost of the experiments by over 50%, compared to static design benchmarks.

Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity. In this paper, we propose a novel deep anomaly detection method for tabular data that leverages Non-Parametric Transformers (NPTs), a model initially proposed for supervised tasks, to capture both feature-feature and sample-sample dependencies. In a reconstruction-based framework, we train the NPT to reconstruct masked features of normal samples. In a non-parametric fashion, we leverage the whole training set during inference and use the model's ability to reconstruct the masked features to generate an anomaly score. To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies for anomaly detection on tabular datasets. Through extensive experiments on 31 benchmark tabular datasets, we demonstrate that our method achieves state-of-the-art performance, outperforming existing methods by 1.7% and 1.2% in terms of F1-score and AUROC, respectively. Our ablation study provides evidence that modeling both types of dependencies is crucial for anomaly detection on tabular data.

In this paper, we introduce a comprehensive approach to bolstering the security, reliability, and comprehensibility of OpenAirInterface5G (OAI5G), an open-source software framework for the exploration, development, and testing of 5G wireless communication systems. Firstly, we employ AFL++, a powerful fuzzing tool, to fuzzy-test OAI5G with respect to its configuration files rigorously. This extensive testing process helps identify errors, defects, and security vulnerabilities that may evade conventional testing methods. Secondly, we harness the capabilities of Large Language Models such as Google Bard to automatically decipher and document the meanings of parameters within the OAI5G codebase that are used in fuzzing. This automated parameter interpretation streamlines subsequent analyses and facilitates more informed decision-making. Together, these two techniques contribute to fortifying the OAI5G system, making it more robust, secure, and understandable for developers and analysts alike.

In this paper, we provide 20,000 non-trivial human annotations on popular datasets as a first step to bridge gap to studying how natural semantic spurious features affect image classification, as prior works often study datasets mixing low-level features due to limitations in accessing realistic datasets. We investigate how natural background colors play a role as spurious features by annotating the test sets of CIFAR10 and CIFAR100 into subgroups based on the background color of each image. We name our datasets \textbf{CIFAR10-B} and \textbf{CIFAR100-B} and integrate them with CIFAR-Cs. We find that overall human-level accuracy does not guarantee consistent subgroup performances, and the phenomenon remains even on models pre-trained on ImageNet or after data augmentation (DA). To alleviate this issue, we propose \textbf{FlowAug}, a \emph{semantic} DA that leverages decoupled semantic representations captured by a pre-trained generative flow. Experimental results show that FlowAug achieves more consistent subgroup results than other types of DA methods on CIFAR10/100 and on CIFAR10/100-C. Additionally, it shows better generalization performance. Furthermore, we propose a generic metric, \emph{MacroStd}, for studying model robustness to spurious correlations, where we take a macro average on the weighted standard deviations across different classes. We show \textit{MacroStd} being more predictive of better performances; per our metric, FlowAug demonstrates improvements on subgroup discrepancy. Although this metric is proposed to study our curated datasets, it applies to all datasets that have subgroups or subclasses. Lastly, we also show superior out-of-distribution results on CIFAR10.1.

In this paper, by constructing extremely hard examples of CSP (with large domains) and SAT (with long clauses), we prove that such examples cannot be solved without exhaustive search, which is stronger than P $\neq$ NP. This constructive approach for proving impossibility results is very different (and missing) from those currently used in computational complexity theory, but is similar to that used by Kurt G\"{o}del in proving his famous logical impossibility results. Just as shown by G\"{o}del's results that proving formal unprovability is feasible in mathematics, the results of this paper show that proving computational hardness is not hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have various effective strategies available for avoiding exhaustive search. However, in cases of extremely hard examples, exhaustive search may be the only viable option, and proving its necessity becomes more straightforward. Consequently, it makes the separation between SAT (with long clauses) and 3-SAT much easier than that between 3-SAT and 2-SAT. Finally, the main results of this paper demonstrate that the fundamental difference between the syntax and the semantics revealed by G\"{o}del's results also exists in CSP and SAT.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司