亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a comprehensive approach to bolstering the security, reliability, and comprehensibility of OpenAirInterface5G (OAI5G), an open-source software framework for the exploration, development, and testing of 5G wireless communication systems. Firstly, we employ AFL++, a powerful fuzzing tool, to fuzzy-test OAI5G with respect to its configuration files rigorously. This extensive testing process helps identify errors, defects, and security vulnerabilities that may evade conventional testing methods. Secondly, we harness the capabilities of Large Language Models such as Google Bard to automatically decipher and document the meanings of parameters within the OAI5G codebase that are used in fuzzing. This automated parameter interpretation streamlines subsequent analyses and facilitates more informed decision-making. Together, these two techniques contribute to fortifying the OAI5G system, making it more robust, secure, and understandable for developers and analysts alike.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

In this paper, we propose leveraging the active reconfigurable intelligence surface (RIS) to support reliable gradient aggregation for over-the-air computation (AirComp) enabled federated learning (FL) systems. An analysis of the FL convergence property reveals that minimizing gradient aggregation errors in each training round is crucial for narrowing the convergence gap. As such, we formulate an optimization problem, aiming to minimize these errors by jointly optimizing the transceiver design and RIS configuration. To handle the formulated highly non-convex problem, we devise a two-layer alternative optimization framework to decompose it into several convex subproblems, each solvable optimally. Simulation results demonstrate the superiority of the active RIS in reducing gradient aggregation errors compared to its passive counterpart.

This paper aims to develop the intelligent traffic steering (TS) framework, which has recently been considered as one of the key developments of 3GPP for advanced 5G. Since achieving key performance indicators (KPIs) for heterogeneous services may not be possible in the monolithic architecture, a novel deep reinforcement learning (DRL)-based TS algorithm is proposed at the non-real-time (non-RT) RAN intelligent controller (RIC) within the open radio access network (ORAN) architecture. To enable ORAN's intelligence, we distribute traffic load onto appropriate paths, which helps efficiently allocate resources to end users in a downlink multi-service scenario. Our proposed approach employs a three-step hierarchical process that involves heuristics, machine learning, and convex optimization to steer traffic flows. Through system-level simulations, we show the superior performance of the proposed intelligent TS scheme, surpassing established benchmark systems by 45.50%.

In this paper, we provide a rigorous proof of convergence of the Adaptive Moment Estimate (Adam) algorithm for a wide class of optimization objectives. Despite the popularity and efficiency of the Adam algorithm in training deep neural networks, its theoretical properties are not yet fully understood, and existing convergence proofs require unrealistically strong assumptions, such as globally bounded gradients, to show the convergence to stationary points. In this paper, we show that Adam provably converges to $\epsilon$-stationary points with ${O}(\epsilon^{-4})$ gradient complexity under far more realistic conditions. The key to our analysis is a new proof of boundedness of gradients along the optimization trajectory of Adam, under a generalized smoothness assumption according to which the local smoothness (i.e., Hessian norm when it exists) is bounded by a sub-quadratic function of the gradient norm. Moreover, we propose a variance-reduced version of Adam with an accelerated gradient complexity of ${O}(\epsilon^{-3})$.

In this paper, we highlight a problem of evaluation metrics adopted in the open-vocabulary segmentation. That is, the evaluation process still heavily relies on closed-set metrics on zero-shot or cross-dataset pipelines without considering the similarity between predicted and ground truth categories. To tackle this issue, we first survey eleven similarity measurements between two categorical words using WordNet linguistics statistics, text embedding, and language models by comprehensive quantitative analysis and user study. Built upon those explored measurements, we designed novel evaluation metrics, namely Open mIoU, Open AP, and Open PQ, tailored for three open-vocabulary segmentation tasks. We benchmarked the proposed evaluation metrics on 12 open-vocabulary methods of three segmentation tasks. Even though the relative subjectivity of similarity distance, we demonstrate that our metrics can still well evaluate the open ability of the existing open-vocabulary segmentation methods. We hope that our work can bring with the community new thinking about how to evaluate the open ability of models. The evaluation code is released in github.

In this paper we propose a general framework to integrate supervised and unsupervised examples with background knowledge expressed by a collection of first-order logic clauses into kernel machines. In particular, we consider a multi-task learning scheme where multiple predicates defined on a set of objects are to be jointly learned from examples, enforcing a set of FOL constraints on the admissible configurations of their values. The predicates are defined on the feature spaces, in which the input objects are represented, and can be either known a priori or approximated by an appropriate kernel-based learner. A general approach is presented to convert the FOL clauses into a continuous implementation that can deal with the outputs computed by the kernel-based predicates. The learning problem is formulated as a semi-supervised task that requires the optimization in the primal of a loss function that combines a fitting loss measure on the supervised examples, a regularization term, and a penalty term that enforces the constraints on both the supervised and unsupervised examples. Unfortunately, the penalty term is not convex and it can hinder the optimization process. However, it is possible to avoid poor solutions by using a two stage learning schema, in which the supervised examples are learned first and then the constraints are enforced.

In this paper, we consider the problem of estimating parameters in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.

In this paper, we consider simultaneous estimation of Poisson parameters in situations where we can use side information in aggregated data. We use standardized squared error and entropy loss functions. Bayesian shrinkage estimators are derived based on conjugate priors. We compare the risk functions of direct estimators and Bayesian estimators with respect to different priors that are constructed based on different subsets of observations. We obtain conditions for domination and also prove minimaxity and admissibility in a simple setting.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司