A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.
Knowledge editing has emerged as an efficient technology for updating the knowledge of large language models (LLMs), attracting increasing attention in recent years. However, there is a lack of effective measures to prevent the malicious misuse of this technology, which could lead to harmful edits in LLMs. These malicious modifications could cause LLMs to generate toxic content, misleading users into inappropriate actions. In front of this risk, we introduce a new task, Knowledge Editing Type Identification (KETI), aimed at identifying different types of edits in LLMs, thereby providing timely alerts to users when encountering illicit edits. As part of this task, we propose KETIBench, which includes five types of harmful edits covering most popular toxic types, as well as one benign factual edit. We develop four classical classification models and three BERT-based models as baseline identifiers for both open-source and closed-source LLMs. Our experimental results, across 42 trials involving two models and three knowledge editing methods, demonstrate that all seven baseline identifiers achieve decent identification performance, highlighting the feasibility of identifying malicious edits in LLMs. Additional analyses reveal that the performance of the identifiers is independent of the reliability of the knowledge editing methods and exhibits cross-domain generalization, enabling the identification of edits from unknown sources. All data and code are available in //github.com/xpq-tech/KETI. Warning: This paper contains examples of toxic text.
The availability of vast amounts of publicly accessible data of source code and the advances in modern language models, coupled with increasing computational resources, have led to a remarkable surge in the development of large language models for code (LLM4Code, for short). The interaction between code datasets and models gives rise to a complex ecosystem characterized by intricate dependencies that are worth studying. This paper introduces a pioneering analysis of the code model ecosystem. Utilizing Hugging Face -- the premier hub for transformer-based models -- as our primary source, we curate a list of datasets and models that are manually confirmed to be relevant to software engineering. By analyzing the ecosystem, we first identify the popular and influential datasets, models, and contributors. The popularity is quantified by various metrics, including the number of downloads, the number of likes, the number of reuses, etc. The ecosystem follows a power-law distribution, indicating that users prefer widely recognized models and datasets. Then, we manually categorize how models in the ecosystem are reused into nine categories, analyzing prevalent model reuse practices. The top 3 most popular reuse types are fine-tuning, architecture sharing, and quantization. We also explore the practices surrounding the publication of LLM4Code, specifically focusing on documentation practice and license selection. We find that the documentation in the ecosystem contains less information than that in general artificial intelligence (AI)-related repositories hosted on GitHub. Additionally, the license usage is also different from other software repositories. Models in the ecosystem adopt some AI-specific licenses, e.g., RAIL (Responsible AI Licenses) and AI model license agreement.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning, as causality reveals the underlying data distribution. However, the lack of a comprehensive benchmark currently limits the evaluation of LLMs' causal learning capabilities. To fill this gap, this paper develops CausalBench based on data from the causal research community, enabling comparative evaluations of LLMs against traditional causal learning algorithms. To provide a comprehensive investigation, we offer three tasks of varying difficulties, including correlation, causal skeleton, and causality identification. Evaluations of 19 leading LLMs reveal that, while closed-source LLMs show potential for simple causal relationships, they significantly lag behind traditional algorithms on larger-scale networks ($>50$ nodes). Specifically, LLMs struggle with collider structures but excel at chain structures, especially at long-chain causality analogous to Chains-of-Thought techniques. This supports the current prompt approaches while suggesting directions to enhance LLMs' causal reasoning capability. Furthermore, CausalBench incorporates background knowledge and training data into prompts to thoroughly unlock LLMs' text-comprehension ability during evaluation, whose findings indicate that, LLM understand causality through semantic associations with distinct entities, rather than directly from contextual information or numerical distributions.
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.