Peruvian mining plays a crucial role in the country's economy, being one of the main producers and exporters of minerals worldwide. In this project, an application was developed in RStudio that utilizes statistical analysis and time series modeling techniques to understand and forecast mineral extraction in different departments of Peru. The application includes an interactive map that allows users to explore Peruvian geography and obtain detailed statistics by clicking on each department. Additionally, bar charts, pie charts, and frequency polygons were implemented to visualize and analyze the data. Using the ARIMA model, predictions were made on the future extraction of minerals, enabling informed decision-making in planning and resource management within the mining sector. The application provides an interactive and accessible tool to explore the Peruvian mining industry, comprehend trends, and make accurate forecasts. These predictions for 2027 in total annual production are as follows: Copper = 2,694,957 MT, Gold = 72,817.47 kg Fine, Zinc = 1,369,649 MT, Silver = 3,083,036 MT, Lead = 255,443 MT, Iron = 15,776,609 MT, Tin = 29,542 MT, Molybdenum = 35,044.66 MT, and Cadmium = 724 MT. These predictions, based on historical data, provide valuable information for strategic decision-making and contribute to the sustainable development of the mining industry in Peru.
Recently, there has been a growing interest in text-to-speech (TTS) methods that can be trained with minimal supervision by combining two types of discrete speech representations and using two sequence-to-sequence tasks to decouple TTS. However, existing methods suffer from three problems: the high dimensionality and waveform distortion of discrete speech representations, the prosodic averaging problem caused by the duration prediction model in non-autoregressive frameworks, and the information redundancy and dimension explosion problems of existing semantic encoding methods. To address these problems, three progressive methods are proposed. First, we propose Diff-LM-Speech, an autoregressive structure consisting of a language model and diffusion models, which models the semantic embedding into the mel-spectrogram based on a diffusion model to achieve higher audio quality. We also introduce a prompt encoder structure based on a variational autoencoder and a prosody bottleneck to improve prompt representation ability. Second, we propose Tetra-Diff-Speech, a non-autoregressive structure consisting of four diffusion model-based modules that design a duration diffusion model to achieve diverse prosodic expressions. Finally, we propose Tri-Diff-Speech, a non-autoregressive structure consisting of three diffusion model-based modules that verify the non-necessity of existing semantic encoding models and achieve the best results. Experimental results show that our proposed methods outperform baseline methods. We provide a website with audio samples.
Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.
Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. In contrast to behavior cloning, which assumes the data is collected from expert demonstrations, offline RL can work with non-expert data and multimodal behavior policies. However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training. Prior work on offline RL uses conditional diffusion models to represent multimodal behavior in the dataset. Nevertheless, these methods are not tailored toward alleviating the out-of-distribution state generalization. We introduce a novel method, named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies to address the out-of-distribution generalization problem. State reconstruction loss promotes more descriptive representation learning of states to alleviate the distribution shift incurred by the out-of-distribution (OOD) states. We design a novel 2D Multimodal Contextual Bandit environment to illustrate the OOD generalization of SRDP compared to prior algorithms. In addition, we assess the performance of our model on D4RL continuous control benchmarks, namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results.
Chain-of-Thought Prompting (CoT) reinforces the reasoning capabilities of Large Language Models (LLMs) through the generation of intermediate rationales. However, these enhancements predominantly benefit large-scale models, leaving small LMs without significant performance improvements when directly applying CoT. Despite the advanced reasoning capabilities of LLMs, CoT relies primarily on their pre-trained internal knowledge. The external knowledge that is previously unknown to the model remains unexploited. This omission becomes pronounced in tasks such as stance detection, where the external background knowledge plays a pivotal role. Additionally, the large-scale architecture of LLMs inevitably present efficiency challenges during deployment. To address these challenges, we introduce the Ladder-of-Thought (LoT) for stance detection. Grounded in a dual-phase Cascaded Optimization framework, LoT directs the model to incorporate high-quality external knowledge, enhancing the intermediate rationales it generates. These bolstered rationales subsequently serve as the foundation for more precise predictions - akin to how a ladder facilitates reaching elevated goals. LoT achieves a balance between efficiency and accuracy, making it an adaptable and efficient framework for stance detection. Our empirical evaluations underscore LoT's effectiveness, marking a 16% improvement over ChatGPT and a 10% enhancement compared to ChatGPT with CoT.
A vast number of systems across the world use algorithmic decision making (ADM) to (partially) automate decisions that have previously been made by humans. When designed well, these systems promise more objective decisions while saving large amounts of resources and freeing up human time. However, when ADM systems are not designed well, they can lead to unfair decisions which discriminate against societal groups. The downstream effects of ADMs critically depend on the decisions made during the systems' design and implementation, as biases in data can be mitigated or reinforced along the modeling pipeline. Many of these design decisions are made implicitly, without knowing exactly how they will influence the final system. It is therefore important to make explicit the decisions made during the design of ADM systems and understand how these decisions affect the fairness of the resulting system. To study this issue, we draw on insights from the field of psychology and introduce the method of multiverse analysis for algorithmic fairness. In our proposed method, we turn implicit design decisions into explicit ones and demonstrate their fairness implications. By combining decisions, we create a grid of all possible "universes" of decision combinations. For each of these universes, we compute metrics of fairness and performance. Using the resulting dataset, one can see how and which decisions impact fairness. We demonstrate how multiverse analyses can be used to better understand variability and robustness of algorithmic fairness using an exemplary case study of predicting public health coverage of vulnerable populations for potential interventions. Our results illustrate how decisions during the design of a machine learning system can have surprising effects on its fairness and how to detect these effects using multiverse analysis.
We propose to apply several gradient estimation techniques to enable the differentiation of programs with discrete randomness in High Energy Physics. Such programs are common in High Energy Physics due to the presence of branching processes and clustering-based analysis. Thus differentiating such programs can open the way for gradient based optimization in the context of detector design optimization, simulator tuning, or data analysis and reconstruction optimization. We discuss several possible gradient estimation strategies, including the recent Stochastic AD method, and compare them in simplified detector design experiments. In doing so we develop, to the best of our knowledge, the first fully differentiable branching program.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.