亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Incorporating tagging into neural machine translation (NMT) systems has shown promising results in helping translate rare words such as named entities (NE). However, translating NE in low-resource setting remains a challenge. In this work, we investigate the effect of using tags and NE hypernyms from knowledge graphs (KGs) in parallel corpus in different levels of resource conditions. We find the tag-and-copy mechanism (tag the NEs in the source sentence and copy them to the target sentence) improves translation in high-resource settings only. Introducing copying also results in polarizing effects in translating different parts-of-speech (POS). Interestingly, we find that copy accuracy for hypernyms is consistently higher than that of entities. As a way of avoiding "hard" copying and utilizing hypernym in bootstrapping rare entities, we introduced a "soft" tagging mechanism and found consistent improvement in high and low-resource settings.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in //github.com/zjunlp/LREBench.

Urban road traffic continuously evolves under uncertainty. Existing traffic control systems only possess a local perspective over the multiple scales of traffic evolution, namely the intersection level, the corridor level, and the region level respectively. Capturing uncertainty under complex traffic spatio-temporal interactions is a very difficult problem and we often experience how fragile such systems are in reality. But luckily, despite its complex mechanics, traffic is described by various periodic phenomena. Workday flow distributions in the morning and evening commuting times can be exploited to make traffic adaptive and robust to disruptions. Additionally, controlling traffic is also based on a periodic process, choosing the phase of green time to allocate to opposite directions right of the pass and complementary red time phase for adjacent directions. In our work, we consider a novel system for road traffic control based on a network of interacting oscillators. Such a model has the advantage to capture temporal and spatial interactions of traffic light phasing as well as the network-level evolution of the traffic macroscopic features (i.e. flow, density). In this study, we propose a new realization of the antifragile control framework to control a network of interacting oscillator-based traffic light models to achieve region-level flow optimization. We demonstrate that antifragile control can capture the volatility of the urban road environment and the uncertainty about the distribution of the disruptions that can occur. We complement our control-theoretic design and analysis with experiments on a real-world setup comparatively discussing the benefits of an antifragile design for traffic control.

The amount of labeled data to train models for speech tasks is limited for most languages, however, the data scarcity is exacerbated for speech translation which requires labeled data covering two different languages. To address this issue, we study a simple and effective approach to build speech translation systems without labeled data by leveraging recent advances in unsupervised speech recognition, machine translation and speech synthesis, either in a pipeline approach, or to generate pseudo-labels for training end-to-end speech translation models. Furthermore, we present an unsupervised domain adaptation technique for pre-trained speech models which improves the performance of downstream unsupervised speech recognition, especially for low-resource settings. Experiments show that unsupervised speech-to-text translation outperforms the previous unsupervised state of the art by 3.2 BLEU on the Libri-Trans benchmark, on CoVoST 2, our best systems outperform the best supervised end-to-end models (without pre-training) from only two years ago by an average of 5.0 BLEU over five X-En directions. We also report competitive results on MuST-C and CVSS benchmarks.

Part-of-Speech (POS) tagging is an important component of the NLP pipeline, but many low-resource languages lack labeled data for training. An established method for training a POS tagger in such a scenario is to create a labeled training set by transferring from high-resource languages. In this paper, we propose a novel method for transferring labels from multiple high-resource source to low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate node labels from source to target using a Graph Neural Network augmented with transformer layers. We show that our propagation creates training sets that allow us to train POS taggers for a diverse set of languages. When combined with enhanced contextualized embeddings, our method achieves a new state-of-the-art for unsupervised POS tagging of low-resource languages.

The problem of classifying turbulent environments from partial observation is key for some theoretical and applied fields, from engineering to earth observation and astrophysics, e.g. to precondition searching of optimal control policies in different turbulent backgrounds, to predict the probability of rare events and/or to infer physical parameters labelling different turbulent set-ups. To achieve such goal one can use different tools depending on the system's knowledge and on the quality and quantity of the accessible data. In this context, we assume to work in a model-free setup completely blind to all dynamical laws, but with a large quantity of (good quality) data for training. As a prototype of complex flows with different attractors, and different multi-scale statistical properties we selected 10 turbulent 'ensembles' by changing the rotation frequency of the frame of reference of the 3d domain and we suppose to have access to a set of partial observations limited to the instantaneous kinetic energy distribution in a 2d plane, as it is often the case in geophysics and astrophysics. We compare results obtained by a Machine Learning (ML) approach consisting of a state-of-the-art Deep Convolutional Neural Network (DCNN) against Bayesian inference which exploits the information on velocity and enstrophy moments. First, we discuss the supremacy of the ML approach, presenting also results at changing the number of training data and of the hyper-parameters. Second, we present an ablation study on the input data aimed to perform a ranking on the importance of the flow features used by the DCNN, helping to identify the main physical contents used by the classifier. Finally, we discuss the main limitations of such data-driven methods and potential interesting applications.

Pre-Training (PT) of text representations has been successfully applied to low-resource Neural Machine Translation (NMT). However, it usually fails to achieve notable gains (sometimes, even worse) on resource-rich NMT on par with its Random-Initialization (RI) counterpart. We take the first step to investigate the complementarity between PT and RI in resource-rich scenarios via two probing analyses, and find that: 1) PT improves NOT the accuracy, but the generalization by achieving flatter loss landscapes than that of RI; 2) PT improves NOT the confidence of lexical choice, but the negative diversity by assigning smoother lexical probability distributions than that of RI. Based on these insights, we propose to combine their complementarities with a model fusion algorithm that utilizes optimal transport to align neurons between PT and RI. Experiments on two resource-rich translation benchmarks, WMT'17 English-Chinese (20M) and WMT'19 English-German (36M), show that PT and RI could be nicely complementary to each other, achieving substantial improvements considering both translation accuracy, generalization, and negative diversity. Probing tools and code are released at: //github.com/zanchangtong/PTvsRI.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司