Environmental perception is an important aspect within the field of autonomous vehicles that provides crucial information about the driving domain, including but not limited to identifying clear driving areas and surrounding obstacles. Semantic segmentation is a widely used perception method for self-driving cars that associates each pixel of an image with a predefined class. In this context, several segmentation models are evaluated regarding accuracy and efficiency. Experimental results on the generated dataset confirm that the segmentation model FasterSeg is fast enough to be used in realtime on lowpower computational (embedded) devices in self-driving cars. A simple method is also introduced to generate synthetic training data for the model. Moreover, the accuracy of the first-person perspective and the bird's eye view perspective are compared. For a $320 \times 256$ input in the first-person perspective, FasterSeg achieves $65.44\,\%$ mean Intersection over Union (mIoU), and for a $320 \times 256$ input from the bird's eye view perspective, FasterSeg achieves $64.08\,\%$ mIoU. Both perspectives achieve a frame rate of $247.11$ Frames per Second (FPS) on the NVIDIA Jetson AGX Xavier. Lastly, the frame rate and the accuracy with respect to the arithmetic 16-bit Floating Point (FP16) and 32-bit Floating Point (FP32) of both perspectives are measured and compared on the target hardware.
Semantic segmentation is a challenging computer vision task demanding a significant amount of pixel-level annotated data. Producing such data is a time-consuming and costly process, especially for domains with a scarcity of experts, such as medicine or forensic anthropology. While numerous semi-supervised approaches have been developed to make the most from the limited labeled data and ample amount of unlabeled data, domain-specific real-world datasets often have characteristics that both reduce the effectiveness of off-the-shelf state-of-the-art methods and also provide opportunities to create new methods that exploit these characteristics. We propose and evaluate a semi-supervised method that reuses available labels for unlabeled images of a dataset by exploiting existing similarities, while dynamically weighting the impact of these reused labels in the training process. We evaluate our method on a large dataset of human decomposition images and find that our method, while conceptually simple, outperforms state-of-the-art consistency and pseudo-labeling-based methods for the segmentation of this dataset. This paper includes graphic content of human decomposition.
With the widespread use of powerful image editing tools, image tampering becomes easy and realistic. Existing image forensic methods still face challenges of low accuracy and robustness. Note that the tampered regions are typically semantic objects, in this letter we propose an effective image tampering localization scheme based on deep semantic segmentation network. ConvNeXt network is used as an encoder to learn better feature representation. The multi-scale features are then fused by Upernet decoder for achieving better locating capability. Combined loss and effective data augmentation are adopted to ensure effective model training. Extensive experimental results confirm that localization performance of our proposed scheme outperforms other state-of-the-art ones.
Moving Object Detection (MOD) is a critical vision task for successfully achieving safe autonomous driving. Despite plausible results of deep learning methods, most existing approaches are only frame-based and may fail to reach reasonable performance when dealing with dynamic traffic participants. Recent advances in sensor technologies, especially the Event camera, can naturally complement the conventional camera approach to better model moving objects. However, event-based works often adopt a pre-defined time window for event representation, and simply integrate it to estimate image intensities from events, neglecting much of the rich temporal information from the available asynchronous events. Therefore, from a new perspective, we propose RENet, a novel RGB-Event fusion Network, that jointly exploits the two complementary modalities to achieve more robust MOD under challenging scenarios for autonomous driving. Specifically, we first design a temporal multi-scale aggregation module to fully leverage event frames from both the RGB exposure time and larger intervals. Then we introduce a bi-directional fusion module to attentively calibrate and fuse multi-modal features. To evaluate the performance of our network, we carefully select and annotate a sub-MOD dataset from the commonly used DSEC dataset. Extensive experiments demonstrate that our proposed method performs significantly better than the state-of-the-art RGB-Event fusion alternatives.
Contemporary deep-learning object detection methods for autonomous driving usually assume prefixed categories of common traffic participants, such as pedestrians and cars. Most existing detectors are unable to detect uncommon objects and corner cases (e.g., a dog crossing a street), which may lead to severe accidents in some situations, making the timeline for the real-world application of reliable autonomous driving uncertain. One main reason that impedes the development of truly reliably self-driving systems is the lack of public datasets for evaluating the performance of object detectors on corner cases. Hence, we introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors. The dataset consists of 1500 carefully selected real-world driving scenes, each containing four object-level corner cases (on average), spanning more than 30 object categories. On CODA, the performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR. Moreover, we experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA, suggesting that a robust perception system for autonomous driving is probably still far from reach. We expect our CODA dataset to facilitate further research in reliable detection for real-world autonomous driving. Our dataset will be released at //coda-dataset.github.io.
The quality of generalized linear models (GLMs), frequently used by insurance companies, depends on the choice of interacting variables. The search for interactions is time-consuming, especially for data sets with a large number of variables, depends much on expert judgement of actuaries, and often relies on visual performance indicators. Therefore, we present an approach to automating the process of finding interactions that should be added to GLMs to improve their predictive power. Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values. In numerical studies, we provide the results of our approach on different data sets: open-source data, artificial data, and proprietary data.
With the rapid development of autonomous vehicles, there witnesses a booming demand for high-definition maps (HD maps) that provide reliable and robust prior information of static surroundings in autonomous driving scenarios. As one of the main high-level elements in the HD map, the road lane centerline is critical for downstream tasks, such as prediction and planning. Manually annotating lane centerline HD maps by human annotators is labor-intensive, expensive and inefficient, severely restricting the wide application and fast deployment of autonomous driving systems. Previous works seldom explore the centerline HD map mapping problem due to the complicated topology and severe overlapping issues of road centerlines. In this paper, we propose a novel method named CenterLineDet to create the lane centerline HD map automatically. CenterLineDet is trained by imitation learning and can effectively detect the graph of lane centerlines by iterations with vehicle-mounted sensors. Due to the application of the DETR-like transformer network, CenterLineDet can handle complicated graph topology, such as lane intersections. The proposed approach is evaluated on a large publicly available dataset Nuscenes, and the superiority of CenterLineDet is well demonstrated by the comparison results. This paper is accompanied by a demo video and a supplementary document that are available at \url{//tonyxuqaq.github.io/projects/CenterLineDet/}.
LiDAR sensor is essential to the perception system in autonomous vehicles and intelligent robots. To fulfill the real-time requirements in real-world applications, it is necessary to efficiently segment the LiDAR scans. Most of previous approaches directly project 3D point cloud onto the 2D spherical range image so that they can make use of the efficient 2D convolutional operations for image segmentation. Although having achieved the encouraging results, the neighborhood information is not well-preserved in the spherical projection. Moreover, the temporal information is not taken into consideration in the single scan segmentation task. To tackle these problems, we propose a novel approach to semantic segmentation for LiDAR sequences named Meta-RangeSeg, where a new range residual image representation is introduced to capture the spatial-temporal information. Specifically, Meta-Kernel is employed to extract the meta features, which reduces the inconsistency between the 2D range image coordinates input and 3D Cartesian coordinates output. An efficient U-Net backbone is used to obtain the multi-scale features. Furthermore, Feature Aggregation Module (FAM) strengthens the role of range channel and aggregates features at different levels. We have conducted extensive experiments for performance evaluation on SemanticKITTI and SemanticPOSS. The promising results show that our proposed Meta-RangeSeg method is more efficient and effective than the existing approaches. Our full implementation is publicly available at //github.com/songw-zju/Meta-RangeSeg .
Recent advances in artificial intelligence promote a wide range of computer vision applications in many different domains. Digital cameras, acting as human eyes, can perceive fundamental object properties, such as shapes and colors, and can be further used for conducting high-level tasks, such as image classification, and object detections. Human perceptions have been widely recognized as the ground truth for training and evaluating computer vision models. However, in some cases, humans can be deceived by what they have seen. Well-functioned human vision relies on stable external lighting while unnatural illumination would influence human perception of essential characteristics of goods. To evaluate the illumination effects on human and computer perceptions, the group presents a novel dataset, the Food Vision Dataset (FVD), to create an evaluation benchmark to quantify illumination effects, and to push forward developments of illumination estimation methods for fair and reliable consumer acceptability prediction from food appearances. FVD consists of 675 images captured under 3 different power and 5 different temperature settings every alternate day for five such days.
Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.