Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions: (1) in the single-agent setting, it achieves an optimal regret of $\Theta(\log T)$ for strongly convex cost functions; and (2) in the multi-agent setting of strongly monotone games, with each agent employing OGD, we obtain last-iterate convergence of the joint action to a unique Nash equilibrium at an optimal rate of $\Theta(\frac{1}{T})$. While these finite-time guarantees highlight its merits, OGD has the drawback that it requires knowing the strong convexity/monotonicity parameters. In this paper, we design a fully adaptive OGD algorithm, \textsf{AdaOGD}, that does not require a priori knowledge of these parameters. In the single-agent setting, our algorithm achieves $O(\log^2(T))$ regret under strong convexity, which is optimal up to a log factor. Further, if each agent employs \textsf{AdaOGD} in strongly monotone games, the joint action converges in a last-iterate sense to a unique Nash equilibrium at a rate of $O(\frac{\log^3 T}{T})$, again optimal up to log factors. We illustrate our algorithms in a learning version of the classical newsvendor problem, where due to lost sales, only (noisy) gradient feedback can be observed. Our results immediately yield the first feasible and near-optimal algorithm for both the single-retailer and multi-retailer settings. We also extend our results to the more general setting of exp-concave cost functions and games, using the online Newton step (ONS) algorithm.
sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.
Correlation coefficients play a pivotal role in quantifying linear relationships between random variables. Yet, their application to time series data is very challenging due to temporal dependencies. This paper introduces a novel approach to estimate the statistical significance of correlation coefficients in time series data, addressing the limitations of traditional methods based on the concept of effective degrees of freedom (or effective sample size, ESS). These effective degrees of freedom represent the independent sample size that would yield comparable test statistics under the assumption of no temporal correlation. We propose to assume a parametric Gaussian form for the autocorrelation function. We show that this assumption, motivated by a Laplace approximation, enables a simple estimator of the ESS that depends only on the temporal derivatives of the time series. Through numerical experiments, we show that the proposed approach yields accurate statistics while significantly reducing computational overhead. In addition, we evaluate the adequacy of our approach on real physiological signals, for assessing the connectivity measures in electrophysiology and detecting correlated arm movements in motion capture data. Our methodology provides a simple tool for researchers working with time series data, enabling robust hypothesis testing in the presence of temporal dependencies.
Harmonic potentials provide globally convergent potential fields that are provably free of local minima. Due to its analytical format, it is particularly suitable for generating safe and reliable robot navigation policies. However, for complex environments that consist of a large number of overlapping non-sphere obstacles, the computation of associated transformation functions can be tedious. This becomes more apparent when: (i) the workspace is initially unknown and the underlying potential fields are updated constantly as the robot explores it; (ii) the high-level mission consists of sequential navigation tasks among numerous regions, requiring the robot to switch between different potentials. Thus, this work proposes an efficient and automated scheme to construct harmonic potentials incrementally online as guided by the task automaton. A novel two-layer harmonic tree (HT) structure is introduced that facilitates the hybrid combination of oriented search algorithms for task planning and harmonic-based navigation controllers for non-holonomic robots. Both layers are adapted efficiently and jointly during online execution to reflect the actual feasibility and cost of navigation within the updated workspace. Global safety and convergence are ensured both for the high-level task plan and the low-level robot trajectory. Known issues such as oscillation or long-detours for purely potential-based methods and sharp-turns or high computation complexity for purely search-based methods are prevented. Extensive numerical simulation and hardware experiments are conducted against several strong baselines.
Background: Identifying and characterising the longitudinal patterns of multimorbidity associated with stroke is needed to better understand patients' needs and inform new models of care. Methods: We used an unsupervised patient-oriented clustering approach to analyse primary care electronic health records (EHR) of 30 common long-term conditions (LTC), in patients with stroke aged over 18, registered in 41 general practices in south London between 2005 and 2021. Results: Of 849,968 registered patients, 9,847 (1.16%) had a record of stroke, 46.5% were female and median age at record was 65.0 year (IQR: 51.5 to 77.0). The median number of LTCs in addition to stroke was 3 (IQR: from 2 to 5). Patients were stratified in eight clusters. These clusters revealed contrasted patterns of multimorbidity, socio-demographic characteristics (age, gender and ethnicity) and risk factors. Beside a core of 3 clusters associated with conventional stroke risk-factors, minor clusters exhibited less common but recurrent combinations of LTCs including mental health conditions, asthma, osteoarthritis and sickle cell anaemia. Importantly, complex profiles combining mental health conditions, infectious diseases and substance dependency emerged. Conclusion: This patient-oriented approach to EHRs uncovers the heterogeneity of profiles of multimorbidity and socio-demographic characteristics associated with stroke. It highlights the importance of conventional stroke risk factors as well as the association of mental health conditions in complex profiles of multimorbidity displayed in a significant proportion of patients. These results address the need for a better understanding of stroke-associated multimorbidity and complexity to inform more efficient and patient-oriented healthcare models.
Benefitting from the vast spatial degrees of freedom, the amalgamation of integrated sensing and communication (ISAC) and massive multiple-input multiple-output (MIMO) is expected to simultaneously improve spectral and energy efficiencies as well as the sensing capability. However, a large number of antennas deployed in massive MIMO-ISAC raises critical challenges in acquiring both accurate channel state information and target parameter information. To overcome these two challenges with a unified framework, we first analyze their underlying system models and then propose a novel tensor-based approach that addresses both the channel estimation and target sensing problems. Specifically, by parameterizing the high-dimensional communication channel exploiting a small number of physical parameters, we associate the channel state information with the sensing parameters of targets in terms of angular, delay, and Doppler dimensions. Then, we propose a shared training pattern adopting the same time-frequency resources such that both the channel estimation and target parameter estimation can be formulated as a canonical polyadic decomposition problem with a similar mathematical expression. On this basis, we first investigate the uniqueness condition of the tensor factorization and the maximum number of resolvable targets by utilizing the specific Vandermonde
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.