亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Personalized PageRank (PPR) is a fundamental tool in unsupervised learning of graph representations such as node ranking, labeling, and graph embedding. However, while data privacy is one of the most important recent concerns, existing PPR algorithms are not designed to protect user privacy. PPR is highly sensitive to the input graph edges: the difference of only one edge may cause a big change in the PPR vector, potentially leaking private user data. In this work, we propose an algorithm which outputs an approximate PPR and has provably bounded sensitivity to input edges. In addition, we prove that our algorithm achieves similar accuracy to non-private algorithms when the input graph has large degrees. Our sensitivity-bounded PPR directly implies private algorithms for several tools of graph learning, such as, differentially private (DP) PPR ranking, DP node classification, and DP node embedding. To complement our theoretical analysis, we also empirically verify the practical performances of our algorithms.

相關內容

Tensor Networks (TNs) have recently been used to speed up kernel machines by constraining the model weights, yielding exponential computational and storage savings. In this paper we prove that the outputs of Canonical Polyadic Decomposition (CPD) and Tensor Train (TT)-constrained kernel machines recover a Gaussian Process (GP), which we fully characterize, when placing i.i.d. priors over their parameters. We analyze the convergence of both CPD and TT-constrained models, and show how TT yields models exhibiting more GP behavior compared to CPD, for the same number of model parameters. We empirically observe this behavior in two numerical experiments where we respectively analyze the convergence to the GP and the performance at prediction. We thereby establish a connection between TN-constrained kernel machines and GPs.

The Reinforcement Learning (RL) algorithm, renowned for its robust learning capability and search stability, has garnered significant attention and found extensive application in Automated Guided Vehicle (AGV) path planning. However, RL planning algorithms encounter challenges stemming from the substantial variance of neural networks caused by environmental instability and significant fluctuations in system structure. These challenges manifest in slow convergence speed and low learning efficiency. To tackle this issue, this paper presents the Particle Filter-Double Deep Q-Network (PF-DDQN) approach, which incorporates the Particle Filter (PF) into multi-AGV reinforcement learning path planning. The PF-DDQN method leverages the imprecise weight values of the network as state values to formulate the state space equation. Through the iterative fusion process of neural networks and particle filters, the DDQN model is optimized to acquire the optimal true weight values, thus enhancing the algorithm's efficiency. The proposed method's effectiveness and superiority are validated through numerical simulations. Overall, the simulation results demonstrate that the proposed algorithm surpasses the traditional DDQN algorithm in terms of path planning superiority and training time indicators by 92.62% and 76.88%, respectively. In conclusion, the PF-DDQN method addresses the challenges encountered by RL planning algorithms in AGV path planning. By integrating the Particle Filter and optimizing the DDQN model, the proposed method achieves enhanced efficiency and outperforms the traditional DDQN algorithm in terms of path planning superiority and training time indicators.

The personalization of machine learning (ML) models to address data drift is a significant challenge in the context of Internet of Things (IoT) applications. Presently, most approaches focus on fine-tuning either the full base model or its last few layers to adapt to new data, while often neglecting energy costs. However, various types of data drift exist, and fine-tuning the full base model or the last few layers may not result in optimal performance in certain scenarios. We propose Target Block Fine-Tuning (TBFT), a low-energy adaptive personalization framework designed for resource-constrained devices. We categorize data drift and personalization into three types: input-level, feature-level, and output-level. For each type, we fine-tune different blocks of the model to achieve optimal performance with reduced energy costs. Specifically, input-, feature-, and output-level correspond to fine-tuning the front, middle, and rear blocks of the model. We evaluate TBFT on a ResNet model, three datasets, three different training sizes, and a Raspberry Pi. Compared with the $Block Avg$, where each block is fine-tuned individually and their performance improvements are averaged, TBFT exhibits an improvement in model accuracy by an average of 15.30% whilst saving 41.57% energy consumption on average compared with full fine-tuning.

Training a Graph Neural Network (GNN) model on large-scale graphs involves a high volume of data communication and compu- tations. While state-of-the-art CPUs and GPUs feature high computing power, the Standard GNN training protocol adopted in existing GNN frameworks cannot efficiently utilize the platform resources. To this end, we propose a novel Unified CPU-GPU protocol that can improve the resource utilization of GNN training on a CPU-GPU platform. The Unified CPU-GPU protocol instantiates multiple GNN training processes in parallel on both the CPU and the GPU. By allocating training processes on the CPU to perform GNN training collaboratively with the GPU, the proposed protocol improves the platform resource utilization and reduces the CPU-GPU data transfer overhead. Since the performance of a CPU and a GPU varies, we develop a novel load balancer that balances the workload dynamically between CPUs and GPUs during runtime. We evaluate our protocol using two representative GNN sampling algorithms, with two widely-used GNN models, on three datasets. Compared with the standard training protocol adopted in the state-of-the-art GNN frameworks, our protocol effectively improves resource utilization and overall training time. On a platform where the GPU moderately outperforms the CPU, our protocol speeds up GNN training by up to 1.41x. On a platform where the GPU significantly outperforms the CPU, our protocol speeds up GNN training by up to 1.26x. Our protocol is open-sourced and can be seamlessly integrated into state-of-the-art GNN frameworks and accelerate GNN training. Our protocol particularly benefits those with limited GPU access due to its high demand.

The rapid growth of machine learning capabilities and the adoption of data processing methods using vector embeddings sparked a great interest in creating systems for vector data management. While the predominant approach of vector data management is to use specialized index structures for fast search over the entirety of the vector embeddings, once combined with other (meta)data, the search queries can also become selective on relational attributes - typical for analytical queries. As using vector indexes differs from traditional relational data access, we revisit and analyze alternative access paths for efficient mixed vector-relational search. We first evaluate the accurate but exhaustive scan-based search and propose hardware optimizations and alternative tensor-based formulation and batching to offset the cost. We outline the complex access-path design space, primarily driven by relational selectivity, and the decisions to consider when selecting an exhaustive scan-based search against an approximate index-based approach. Since the vector index primarily avoids expensive computation across the entire dataset, contrary to the common relational knowledge, it is better to scan at lower selectivity and probe at higher, with a cross-point between the two approaches dictated by data dimensionality and the number of concurrent search queries.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司