A novel kinematically redundant (6+3)-DoF parallel robot is presented in this paper. Three identical 3-DoF RU/2-RUS legs are attached to a configurable platform through spherical joints. With the selected leg mechanism, the motors are mounted at the base, reducing the reflected inertia. The robot is intended to be actuated with direct-drive motors in order to perform intuitive physical human-robot interaction. The design of the leg mechanism maximizes the workspace in which the end-effector of the leg can have a 2g acceleration in all directions. All singularities of the leg mechanism are identified under a simplifying assumption. A CAD model of the (6+3)-DoF robot is presented in order to illustrate the preliminary design of the robot.
How should we schedule jobs to minimize mean queue length? In the preemptive M/G/1 queue, we know the optimal policy is the Gittins policy, which uses any available information about jobs' remaining service times to dynamically prioritize jobs. For models more complex than the M/G/1, optimal scheduling is generally intractable. This leads us to ask: beyond the M/G/1, does Gittins still perform well? Recent results indicate that Gittins performs well in the M/G/k, meaning that its additive suboptimality gap is bounded by an expression which is negligible in heavy traffic. But allowing multiple servers is just one way to extend the M/G/1, and most other extensions remain open. Does Gittins still perform well with non-Poisson arrival processes? Or if servers require setup times when transitioning from idle to busy? In this paper, we give the first analysis of the Gittins policy that can handle any combination of (a) multiple servers, (b) non-Poisson arrivals, and (c) setup times. Our results thus cover the G/G/1 and G/G/k, with and without setup times, bounding Gittins's suboptimality gap in each case. Each of (a), (b), and (c) adds a term to our bound, but all the terms are negligible in heavy traffic, thus implying Gittins's heavy-traffic optimality in all the systems we consider. Another consequence of our results is that Gittins is optimal in the M/G/1 with setup times at all loads.
Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.
The bundling of flagella is known to create a "run" phase, where the bacteria moves in a nearly straight line rather than making changes in direction. Historically, mechanical explanations for the bundling phenomenon intrigued many researchers, and significant advances were made in physical models and experimental methods. Contributing to the field of research, we present a bacteria-inspired centimeter-scale soft robotic hardware platform and a computational framework for a physically plausible simulation model of the multi-flagellated robot under low Reynolds number (~0.1). The fluid-structure interaction simulation couples the Discrete Elastic Rods algorithm with the method of Regularized Stokeslet Segments. Contact between two flagella is handled by a penalty-based method. We present a comparison between our experimental and simulation results and verify that the simulation tool can capture the essential physics of this problem. Preliminary findings on robustness to buckling provided by the bundling phenomenon and the efficiency of a multi-flagellated soft robot are compared with the single-flagellated counterparts. Observations were made on the coupling between geometry and elasticity, which manifests itself in the propulsion of the robot by nonlinear dependency on the rotational speed of the flagella.
Biological nervous systems consist of networks of diverse, sophisticated information processors in the form of neurons of different classes. In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons within a layer or even the whole network; training of ANNs focuses on synaptic optimization. In this paper, we propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations. Demonstrating the promise of the approach, we show that evolving neural parameters alone allows agents to solve various reinforcement learning tasks without optimizing any synaptic weights. While not aiming to be an accurate biological model, parameterizing neurons to a larger degree than the current common practice, allows us to ask questions about the computational abilities afforded by neural diversity in random neural networks. The presented results open up interesting future research directions, such as combining evolved neural diversity with activity-dependent plasticity.
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
We present and analyse a hybridized discontinuous Galerkin method for incompressible flow problems using non-affine cells, proving that it preserves a key invariance property that illudes most methods, namely that any irrotational component of the prescribed force is exactly balanced by the pressure gradient and does not influence the velocity field. This invariance property can be preserved in the discrete problem if the incompressibility constraint is satisfied in a sufficiently strong sense. We derive sufficient conditions to guarantee discretely divergence-free functions are exactly divergence-free, and give examples of divergence-free finite elements on meshes containing triangular, quadrilateral, tetrahedral, or hexahedral cells generated by a (possibly non-affine) map from their respective reference cells. In the case of quadrilateral cells, we prove an optimal error estimate for the velocity field that does not depend on the pressure approximation. Our theoretical analysis is supported by numerical results.
In the setting of functional data analysis, we derive optimal rates of convergence in the supremum norm for estimating the H\"older-smooth mean function of a stochastic processes which is repeatedly and discretely observed at fixed, multivariate, synchronous design points and with additional errors. Similarly to the rates in $L_2$ obtained in Cai and Yuan (2011), for sparse design a discretization term dominates, while in the dense case the $\sqrt n$ rate can be achieved as if the $n$ processes were continuously observed without errors. However, our analysis differs in several respects from Cai and Yuan (2011). First, we do not assume that the paths of the processes are as smooth as the mean, but still obtain the $\sqrt n$ rate of convergence without additional logarithmic factors in the dense setting. Second, we show that in the supremum norm, there is an intermediate regime between the sparse and dense cases dominated by the contribution of the observation errors. Third, and in contrast to the analysis in $L_2$, interpolation estimators turn out to be sub-optimal in $L_\infty$ in the dense setting, which explains their poor empirical performance. We also obtain a central limit theorem in the supremum norm and discuss the selection of the bandwidth. Simulations and real data applications illustrate the results.
Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graphs, which we call a tree of transitive tournaments. The latter are block graphs combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behavior of a Markov random field. We are also interested in the identifiability of the model parameters in case some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.
A parametric class of trust-region algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of (possibly approximate) second-order information when available. The rate of convergence of methods in the class is analyzed and is shown to be identical to that known for first-order optimization methods using both function and gradients values, recovering existing results for purely-first order variants and improving the explicit dependence on problem dimension. This rate is shown to be essentially sharp. A new class of methods is also presented, for which a slightly worse and essentially sharp complexity result holds. Limited numerical experiments show that the new methods' performance may be comparable to that of standard steepest descent, despite using significantly less information, and that this performance is relatively insensitive to noise.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.