亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graphs, which we call a tree of transitive tournaments. The latter are block graphs combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behavior of a Markov random field. We are also interested in the identifiability of the model parameters in case some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.

相關內容

Cyber-Physical Systems (CPSs), comprising both software and physical components, arise in many industry-relevant domains and are often mission- or safety-critical. System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating the value of some KPIs, when the system runs in its operational environment, i.e., in presence of inputs (from users or other systems) and/or of additional, uncontrolled disturbances. To enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the simulation of a system model under the (time bounded) operational scenarios of interest. Simulation-based SLV can be computationally prohibitive (years of sequential simulation), since model simulation is computationally intensive and the set of scenarios of interest can huge. We present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from symbolic structures, e.g., constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, thus minimising the overall completion time, compatibly with the available simulator memory capacity. Our experiments on Modelica/FMU and Simulink case study models with up to ~200 million scenarios show that our optimisation yields speedups as high as 8x. This, together with the enabled massive parallelisation, makes practically viable (a few weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which would otherwise take inconceivably long time.

Weighted low rank approximation is a fundamental problem in numerical linear algebra, and it has many applications in machine learning. Given a matrix $M \in \mathbb{R}^{n \times n}$, a weight matrix $W \in \mathbb{R}_{\geq 0}^{n \times n}$, a parameter $k$, the goal is to output two matrices $U, V \in \mathbb{R}^{n \times k}$ such that $\| W \circ (M - U V^\top) \|_F$ is minimized, where $\circ$ denotes the Hadamard product. Such a problem is known to be NP-hard and even hard to approximate assuming Exponential Time Hypothesis [GG11, RSW16]. Meanwhile, alternating minimization is a good heuristic solution for approximating weighted low rank approximation. The work [LLR16] shows that, under mild assumptions, alternating minimization does provide provable guarantees. In this work, we develop an efficient and robust framework for alternating minimization. For weighted low rank approximation, this improves the runtime of [LLR16] from $n^2 k^2$ to $n^2k$. At the heart of our work framework is a high-accuracy multiple response regression solver together with a robust analysis of alternating minimization.

We use a combination of unsupervised clustering and sparsity-promoting inference algorithms to learn locally dominant force balances that explain macroscopic pattern formation in self-organized active particle systems. The self-organized emergence of macroscopic patterns from microscopic interactions between self-propelled particles can be widely observed nature. Although hydrodynamic theories help us better understand the physical basis of this phenomenon, identifying a sufficient set of local interactions that shape, regulate, and sustain self-organized structures in active particle systems remains challenging. We investigate a classic hydrodynamic model of self-propelled particles that produces a wide variety of patterns, like asters and moving density bands. Our data-driven analysis shows that propagating bands are formed by local alignment interactions driven by density gradients, while steady-state asters are shaped by a mechanism of splay-induced negative compressibility arising from strong particle interactions. Our method also reveals analogous physical principles of pattern formation in a system where the speed of the particle is influenced by local density. This demonstrates the ability of our method to reveal physical commonalities across models. The physical mechanisms inferred from the data are in excellent agreement with analytical scaling arguments and experimental observations.

Latent linear dynamical systems with Bernoulli observations provide a powerful modeling framework for identifying the temporal dynamics underlying binary time series data, which arise in a variety of contexts such as binary decision-making and discrete stochastic processes (e.g., binned neural spike trains). Here we develop a spectral learning method for fast, efficient fitting of probit-Bernoulli latent linear dynamical system (LDS) models. Our approach extends traditional subspace identification methods to the Bernoulli setting via a transformation of the first and second sample moments. This results in a robust, fixed-cost estimator that avoids the hazards of local optima and the long computation time of iterative fitting procedures like the expectation-maximization (EM) algorithm. In regimes where data is limited or assumptions about the statistical structure of the data are not met, we demonstrate that the spectral estimate provides a good initialization for Laplace-EM fitting. Finally, we show that the estimator provides substantial benefits to real world settings by analyzing data from mice performing a sensory decision-making task.

Gaussian graphical models are nowadays commonly applied to the comparison of groups sharing the same variables, by jointy learning their independence structures. We consider the case where there are exactly two dependent groups and the association structure is represented by a family of coloured Gaussian graphical models suited to deal with paired data problems. To learn the two dependent graphs, together with their across-graph association structure, we implement a fused graphical lasso penalty. We carry out a comprehensive analysis of this approach, with special attention to the role played by some relevant submodel classes. In this way, we provide a broad set of tools for the application of Gaussian graphical models to paired data problems. These include results useful for the specification of penalty values in order to obtain a path of lasso solutions and an ADMM algorithm that solves the fused graphical lasso optimization problem. Finally, we present an application of our method to cancer genomics where it is of interest to compare cancer cells with a control sample from histologically normal tissues adjacent to the tumor. All the methods described in this article are implemented in the $\texttt{R}$ package $\texttt{pdglasso}$ availabe at: //github.com/savranciati/pdglasso.

According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) definition as part of the regulatory approval application, in which case process parameter (PP) deviations within this space are not considered a change and do not trigger a regulatory post approval procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on specific values of another. However, independent PP ranges (linear combinations) are often preferred in biopharmaceutical manufacturing due to their operation simplicity. While some statistical software supports the calculation of a DS comprised of linear combinations, such methods are generally based on discretizing the parameter space - an approach that scales poorly as the number of PPs increases. Here, we introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate the largest design space within the parameter space that results in critical quality attribute (CQA) boundaries within acceptance criteria, predicted by a regression model. A precomputed approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of this boundary using a single matrix multiplication. Correctness of the method was validated against different ground truths with known design spaces. Compared to stateof-the-art, grid-based approaches, the optimizer-based procedure is more accurate, generally yields a larger DS and enables the calculation in higher dimensions. Furthermore, a proposed weighting scheme can be used to favor certain PPs over others and therefore enabling a more dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide greater operational flexibility for biopharmaceutical manufacturers.

Machine learning methods to aid defence systems in detecting malicious activity typically rely on labelled data. In some domains, such labelled data is unavailable or incomplete. In practice this can lead to low detection rates and high false positive rates, which characterise for example anti-money laundering systems. In fact, it is estimated that 1.7--4 trillion euros are laundered annually and go undetected. We propose The GANfather, a method to generate samples with properties of malicious activity, without label requirements. We propose to reward the generation of malicious samples by introducing an extra objective to the typical Generative Adversarial Networks (GANs) loss. Ultimately, our goal is to enhance the detection of illicit activity using the discriminator network as a novel and robust defence system. Optionally, we may encourage the generator to bypass pre-existing detection systems. This setup then reveals defensive weaknesses for the discriminator to correct. We evaluate our method in two real-world use cases, money laundering and recommendation systems. In the former, our method moves cumulative amounts close to 350 thousand dollars through a network of accounts without being detected by an existing system. In the latter, we recommend the target item to a broad user base with as few as 30 synthetic attackers. In both cases, we train a new defence system to capture the synthetic attacks.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

北京阿比特科技有限公司