亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weighted low rank approximation is a fundamental problem in numerical linear algebra, and it has many applications in machine learning. Given a matrix $M \in \mathbb{R}^{n \times n}$, a weight matrix $W \in \mathbb{R}_{\geq 0}^{n \times n}$, a parameter $k$, the goal is to output two matrices $U, V \in \mathbb{R}^{n \times k}$ such that $\| W \circ (M - U V^\top) \|_F$ is minimized, where $\circ$ denotes the Hadamard product. Such a problem is known to be NP-hard and even hard to approximate assuming Exponential Time Hypothesis [GG11, RSW16]. Meanwhile, alternating minimization is a good heuristic solution for approximating weighted low rank approximation. The work [LLR16] shows that, under mild assumptions, alternating minimization does provide provable guarantees. In this work, we develop an efficient and robust framework for alternating minimization. For weighted low rank approximation, this improves the runtime of [LLR16] from $n^2 k^2$ to $n^2k$. At the heart of our work framework is a high-accuracy multiple response regression solver together with a robust analysis of alternating minimization.

相關內容

Many stochastic processes in the physical and biological sciences can be modelled as Brownian dynamics with multiplicative noise. However, numerical integrators for these processes can lose accuracy or even fail to converge when the diffusion term is configuration-dependent. One remedy is to construct a transform to a constant-diffusion process and sample the transformed process instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can be used either individually or in combination to map a general class of variable-diffusion Brownian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing recovery of the original dynamics. We motivate our methodology using examples in one dimension before then considering multivariate diffusion processes. We illustrate the benefits of the transforms through numerical simulations, demonstrating how the right combination of integrator and transform can improve computational efficiency and the order of convergence to the invariant distribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic Stokes-Einstein diffusion that has applications in biophysical modelling.

Much research effort is being applied to the task of compressing the knowledge of self-supervised models, which are powerful, yet large and memory consuming. In this work, we show that the original method of knowledge distillation (and its more recently proposed extension, decoupled knowledge distillation) can be applied to the task of distilling HuBERT. In contrast to methods that focus on distilling internal features, this allows for more freedom in the network architecture of the compressed model. We thus propose to distill HuBERT's Transformer layers into an LSTM-based distilled model that reduces the number of parameters even below DistilHuBERT and at the same time shows improved performance in automatic speech recognition.

Classical simulations are essential for the development of quantum computing, and their exponential scaling can easily fill any modern supercomputer. In this paper we consider the performance and energy consumption of large Quantum Fourier Transform (QFT) simulations run on ARCHER2, the UK's National Supercomputing Service, with QuEST toolkit. We take into account CPU clock frequency and node memory size, and use cache-blocking to rearrange the circuit, which minimises communications. We find that using 2.00GHz instead of 2.25GHz can save as much as 25% of energy at 5% increase in runtime. Higher node memory also has the potential to be more efficient, and cost the user fewer CUs, but at higher runtime penalty. Finally, we present a cache-blocking QFT circuit, which halves the required communication. All our optimisations combined result in 40% faster simulations and 35% energy savings in 44 qubit simulations on 4,096 ARCHER2 nodes.

Model predictive control (MPC) is a powerful tool for planning and controlling dynamical systems due to its capacity for handling constraints and taking advantage of preview information. Nevertheless, MPC performance is highly dependent on the choice of cost function tuning parameters. In this work, we demonstrate an approach for online automatic tuning of an MPC controller with an example application to an ecological cruise control system that saves fuel by using a preview of road grade. We solve the global fuel consumption minimization problem offline using dynamic programming and find the corresponding MPC cost function by solving the inverse optimization problem. A neural network fitted to these offline results is used to generate the desired MPC cost function weight during online operation. The effectiveness of the proposed approach is verified in simulation for different road geometries.

Recent advances in metric, semantic, and topological mapping have equipped autonomous robots with semantic concept grounding capabilities to interpret natural language tasks. This work aims to leverage these new capabilities with an efficient task planning algorithm for hierarchical metric-semantic models. We consider a scene graph representation of the environment and utilize a large language model (LLM) to convert a natural language task into a linear temporal logic (LTL) automaton. Our main contribution is to enable optimal hierarchical LTL planning with LLM guidance over scene graphs. To achieve efficiency, we construct a hierarchical planning domain that captures the attributes and connectivity of the scene graph and the task automaton, and provide semantic guidance via an LLM heuristic function. To guarantee optimality, we design an LTL heuristic function that is provably consistent and supplements the potentially inadmissible LLM guidance in multi-heuristic planning. We demonstrate efficient planning of complex natural language tasks in scene graphs of virtualized real environments.

Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.

Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language. Despite these advances, their integration with real-world environments such as large-scale knowledge bases (KBs) remains an underdeveloped area, affecting applications such as semantic parsing and indulging in "hallucinated" information. This paper is an experimental investigation aimed at uncovering the robustness challenges that LMs encounter when tasked with knowledge base question answering (KBQA). The investigation covers scenarios with inconsistent data distribution between training and inference, such as generalization to unseen domains, adaptation to various language variations, and transferability across different datasets. Our comprehensive experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions. While the LM is a promising technology, the robustness of the current form in dealing with complex environments is fragile and of limited practicality because of the data distribution issue. This calls for future research on data collection and LM learning paradims.

The central limit theorem is one of the most fundamental results in probability and has been successfully extended to locally dependent data and strongly-mixing random fields. In this paper, we establish its rate of convergence for transport distances, namely for arbitrary $p\ge1$ we obtain an upper bound for the Wasserstein-$p$ distance for locally dependent random variables and strongly mixing stationary random fields. Our proofs adapt the Stein dependency neighborhood method to the Wasserstein-$p$ distance and as a by-product we establish high-order local expansions of the Stein equation for dependent random variables. Finally, we demonstrate how our results can be used to obtain tail bounds that are asymptotically tight, and decrease polynomially fast, for the empirical average of weakly dependent random variables.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司