The central limit theorem is one of the most fundamental results in probability and has been successfully extended to locally dependent data and strongly-mixing random fields. In this paper, we establish its rate of convergence for transport distances, namely for arbitrary $p\ge1$ we obtain an upper bound for the Wasserstein-$p$ distance for locally dependent random variables and strongly mixing stationary random fields. Our proofs adapt the Stein dependency neighborhood method to the Wasserstein-$p$ distance and as a by-product we establish high-order local expansions of the Stein equation for dependent random variables. Finally, we demonstrate how our results can be used to obtain tail bounds that are asymptotically tight, and decrease polynomially fast, for the empirical average of weakly dependent random variables.
We consider multilevel low rank (MLR) matrices, defined as a row and column permutation of a sum of matrices, each one a block diagonal refinement of the previous one, with all blocks low rank given in factored form. MLR matrices extend low rank matrices but share many of their properties, such as the total storage required and complexity of matrix-vector multiplication. We address three problems that arise in fitting a given matrix by an MLR matrix in the Frobenius norm. The first problem is factor fitting, where we adjust the factors of the MLR matrix. The second is rank allocation, where we choose the ranks of the blocks in each level, subject to the total rank having a given value, which preserves the total storage needed for the MLR matrix. The final problem is to choose the hierarchical partition of rows and columns, along with the ranks and factors. This paper is accompanied by an open source package that implements the proposed methods.
Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that can provide faster and more efficient solutions to large-scale combinatorial optimization is considered. MBS is formulated in a quadratic unbounded binary optimization form and solved with Coherent Ising Machine (CIM) physical machine. We compare the performance of our solution with two classic heuristics, simulated annealing and Tabu search. The results demonstrate an average performance improvement by a factor of 261.23 and 20.6, respectively, which shows that CIM-based solution performs significantly better in terms of selecting the optimal subset of beams. This work shows great promise for practical 5G operation and promotes the application of quantum computing in solving computationally hard problems in communication.
Temporal relation extraction models have thus far been hindered by a number of issues in existing temporal relation-annotated news datasets, including: (1) low inter-annotator agreement due to the lack of specificity of their annotation guidelines in terms of what counts as a temporal relation; (2) the exclusion of long-distance relations within a given document (those spanning across different paragraphs); and (3) the exclusion of events that are not centred on verbs. This paper aims to alleviate these issues by presenting a new annotation scheme that clearly defines the criteria based on which temporal relations should be annotated. Additionally, the scheme includes events even if they are not expressed as verbs (e.g., nominalised events). Furthermore, we propose a method for annotating all temporal relations -- including long-distance ones -- which automates the process, hence reducing time and manual effort on the part of annotators. The result is a new dataset, the TIMELINE corpus, in which improved inter-annotator agreement was obtained, in comparison with previously reported temporal relation datasets. We report the results of training and evaluating baseline temporal relation extraction models on the new corpus, and compare them with results obtained on the widely used MATRES corpus.
We propose a new algorithm for efficiently solving the damped Fisher matrix in large-scale scenarios where the number of parameters significantly exceeds the number of available samples. This problem is fundamental for natural gradient descent and stochastic reconfiguration. Our algorithm is based on Cholesky decomposition and is generally applicable. Benchmark results show that the algorithm is significantly faster than existing methods.
We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.
We study the sensitivity of infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs) with respect to modeling uncertainties. In particular, we consider derivative-based sensitivity analysis of the information gain, as measured by the Kullback-Leibler divergence from the posterior to the prior distribution. To facilitate this, we develop a fast and accurate method for computing derivatives of the information gain with respect to auxiliary model parameters. Our approach combines low-rank approximations, adjoint-based eigenvalue sensitivity analysis, and post-optimal sensitivity analysis. The proposed approach also paves way for global sensitivity analysis by computing derivative-based global sensitivity measures. We illustrate different aspects of the proposed approach using an inverse problem governed by a scalar linear elliptic PDE, and an inverse problem governed by the three-dimensional equations of linear elasticity, which is motivated by the inversion of the fault-slip field after an earthquake.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.