亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this letter, we present a novel bi-modal bi-copter robot called Skater, which is adaptable to air and various ground surfaces. Skater consists of a bi-copter moving along its longitudinal direction with two passive wheels on both sides. Using longitudinally arranged bi-copter as the unified actuation system for both aerial and ground modes, this robot not only keeps concise and lightweight mechanism, but also possesses exceptional terrain traversing capability and strong steering capacity. Moreover, leveraging the vectored thrust characteristic of bi-copters, Skater can actively generate the centripetal force needed for steering, enabling it to achieve stable movement even on slippery surfaces. Furthermore, we model the comprehensive dynamics of Skater, analyze its differential flatness and introduce a controller using nonlinear model predictive control for trajectory tracking. The outstanding performance of the system is verified by extensive real-world experiments and benchmark comparisons.

相關內容

清華大學智能產業研究院(AIR)招聘深度強化方向的本科/碩士/博士實習生,主要研究方向側重前沿 offline RL/multi-agent RL 算法研究及轉化落地。團隊同時注重與行業頭部企業密切協作,賦能相應產業,實現高水平的產學研轉化。

In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. We will make our source code publicly available at //github.com/fraunhoferhhi/spvloc .

In this paper, we unveil a fundamental side channel in Wi-Fi networks, specifically the observable frame size, which can be exploited by attackers to conduct TCP hijacking attacks. Despite the various security mechanisms (e.g., WEP and WPA2/WPA3) implemented to safeguard Wi-Fi networks, our study reveals that an off path attacker can still extract sufficient information from the frame size side channel to hijack the victim's TCP connection. Our side channel attack is based on two significant findings: (i) response packets (e.g., ACK and RST) generated by TCP receivers vary in size, and (ii) the encrypted frames containing these response packets have consistent and distinguishable sizes. By observing the size of the victim's encrypted frames, the attacker can detect and hijack the victim's TCP connections. We validate the effectiveness of this side channel attack through two case studies, i.e., SSH DoS and web traffic manipulation. Precisely, our attack can terminate the victim's SSH session in 19 seconds and inject malicious data into the victim's web traffic within 28 seconds. Furthermore, we conduct extensive measurements to evaluate the impact of our attack on real-world Wi-Fi networks. We test 30 popular wireless routers from 9 well-known vendors, and none of these routers can protect victims from our attack. Besides, we implement our attack in 80 real-world Wi-Fi networks and successfully hijack the victim's TCP connections in 75 (93.75%) evaluated Wi-Fi networks. We have responsibly disclosed the vulnerability to the Wi-Fi Alliance and proposed several mitigation strategies to address this issue.

In this paper, we address the Bracket Image Restoration and Enhancement (BracketIRE) task using a novel framework, which requires restoring a high-quality high dynamic range (HDR) image from a sequence of noisy, blurred, and low dynamic range (LDR) multi-exposure RAW inputs. To overcome this challenge, we present the IREANet, which improves the multiple exposure alignment and aggregation with a Flow-guide Feature Alignment Module (FFAM) and an Enhanced Feature Aggregation Module (EFAM). Specifically, the proposed FFAM incorporates the inter-frame optical flow as guidance to facilitate the deformable alignment and spatial attention modules for better feature alignment. The EFAM further employs the proposed Enhanced Residual Block (ERB) as a foundational component, wherein a unidirectional recurrent network aggregates the aligned temporal features to better reconstruct the results. To improve model generalization and performance, we additionally employ the Bayer preserving augmentation (BayerAug) strategy to augment the multi-exposure RAW inputs. Our experimental evaluations demonstrate that the proposed IREANet shows state-of-the-art performance compared with previous methods.

In this paper, we study some codes of algebraic geometry related to certain maximal curves. Quantum stabilizer codes obtained through the self orthogonality of Hermitian codes of this error correcting do not always have good parameters. However, appropriate parameters found that the Hermitian self-orthogonal code quantum stabilizer code has good parameters. Therefore, we investigated the quantum stabilizer code at a certain maximum curve and modified its parameters. Algebraic geometry codes show promise for enabling high data rate transmission over noisy power line communication channels.

In this paper, we investigate the millimeter-wave (mmWave) near-field beam training problem to find the correct beam direction. In order to address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first design a set of sparse bases based on the polar domain sparsity of the near-field channel. Then, the random hash functions are chosen to construct the near-field multi-arm beam training codebook. Each multi-arm beam codeword is scanned in a time slot until all the predefined codewords are traversed. Finally, the soft decision and voting methods are applied to distinguish the signal from different base stations and obtain correctly aligned beams. Simulation results show that our proposed near-field HMB training method can reduce the beam training overhead to the logarithmic level, and achieve 96.4% identification accuracy of exhaustive beam training. Moreover, we also verify applicability under the far-field scenario.

In this work, we present the MM-MATH dataset, a novel benchmark developed to rigorously evaluate the performance of advanced large language and multimodal models - including but not limited to GPT-4, GPT-4V, and Claude - within the domain of geometric computation. This dataset comprises 5,929 meticulously crafted geometric problems, each paired with a corresponding image, aimed at mirroring the complexity and requirements typical of ninth-grade mathematics. The motivation behind MM-MATH stems from the burgeoning interest and significant strides in multimodal technology, which necessitates a paradigm shift in assessment methodologies from mere outcome analysis to a more holistic evaluation encompassing reasoning and procedural correctness. Despite impressive gains in various benchmark performances, our analysis uncovers a persistent and notable deficiency in these models' ability to parse and interpret geometric information accurately from images, accounting for over 60% of observed errors. By deploying a dual-focused evaluation approach, examining both the end results and the underlying problem-solving processes, we unearthed a marked discrepancy between the capabilities of current multimodal models and human-level proficiency. The introduction of MM-MATH represents a tripartite contribution to the field: it not only serves as a comprehensive and challenging benchmark for assessing geometric problem-solving prowess but also illuminates critical gaps in textual and visual comprehension that current models exhibit. Through this endeavor, we aspire to catalyze further research and development aimed at bridging these gaps, thereby advancing the state of multimodal model capabilities to new heights.

In this work, we introduce DeepIPC, a novel end-to-end model tailored for autonomous driving, which seamlessly integrates perception and control tasks. Unlike traditional models that handle these tasks separately, DeepIPC innovatively combines a perception module, which processes RGBD images for semantic segmentation and generates bird's eye view (BEV) mappings, with a controller module that utilizes these insights along with GNSS and angular speed measurements to accurately predict navigational waypoints. This integration allows DeepIPC to efficiently translate complex environmental data into actionable driving commands. Our comprehensive evaluation demonstrates DeepIPC's superior performance in terms of drivability and multi-task efficiency across diverse real-world scenarios, setting a new benchmark for end-to-end autonomous driving systems with a leaner model architecture. The experimental results underscore DeepIPC's potential to significantly enhance autonomous vehicular navigation, promising a step forward in the development of autonomous driving technologies. For further insights and replication, we will make our code and datasets available at //github.com/oskarnatan/DeepIPC.

Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains not well-explored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with a frozen LLM, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from captions in the MusicCaps datasets, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.

Recently, image-to-3D approaches have achieved significant results with a natural image as input. However, it is not always possible to access these enriched color input samples in practical applications, where only sketches are available. Existing sketch-to-3D researches suffer from limitations in broad applications due to the challenges of lacking color information and multi-view content. To overcome them, this paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description. Concretely, Sketch3D first instantiates the given sketch in the reference image through the shape-preserving generation process. Second, the reference image is leveraged to deduce a coarse 3D Gaussian prior, and multi-view style-consistent guidance images are generated based on the renderings of the 3D Gaussians. Finally, three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss. Extensive visual comparisons and quantitative analysis illustrate the advantage of our Sketch3D in generating realistic 3D assets while preserving consistency with the input.

In this paper, we investigate a multi-receiver communication system enabled by movable antennas (MAs). Specifically, the transmit beamforming and the double-side antenna movement at the transceiver are jointly designed to maximize the sum-rate of all receivers under imperfect channel state information (CSI). Since the formulated problem is non-convex with highly coupled variables, conventional optimization methods cannot solve it efficiently. To address these challenges, an effective learning-based algorithm is proposed, namely heterogeneous multi-agent deep deterministic policy gradient (MADDPG), which incorporates two agents to learn policies for beamforming and movement of MAs, respectively. Based on the offline learning under numerous imperfect CSI, the proposed heterogeneous MADDPG can output the solutions for transmit beamforming and antenna movement in real time. Simulation results validate the effectiveness of the proposed algorithm, and the MA can significantly improve the sum-rate performance of multiple receivers compared to other benchmark schemes.

北京阿比特科技有限公司