亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we address the Bracket Image Restoration and Enhancement (BracketIRE) task using a novel framework, which requires restoring a high-quality high dynamic range (HDR) image from a sequence of noisy, blurred, and low dynamic range (LDR) multi-exposure RAW inputs. To overcome this challenge, we present the IREANet, which improves the multiple exposure alignment and aggregation with a Flow-guide Feature Alignment Module (FFAM) and an Enhanced Feature Aggregation Module (EFAM). Specifically, the proposed FFAM incorporates the inter-frame optical flow as guidance to facilitate the deformable alignment and spatial attention modules for better feature alignment. The EFAM further employs the proposed Enhanced Residual Block (ERB) as a foundational component, wherein a unidirectional recurrent network aggregates the aligned temporal features to better reconstruct the results. To improve model generalization and performance, we additionally employ the Bayer preserving augmentation (BayerAug) strategy to augment the multi-exposure RAW inputs. Our experimental evaluations demonstrate that the proposed IREANet shows state-of-the-art performance compared with previous methods.

相關內容

 是一個開源的,適合 web 設計師和前端開發者的編輯器,由 Adobe 創立。

In this paper, we initiate the study of local model reconstruction attacks for federated learning, where a honest-but-curious adversary eavesdrops the messages exchanged between a targeted client and the server, and then reconstructs the local/personalized model of the victim. The local model reconstruction attack allows the adversary to trigger other classical attacks in a more effective way, since the local model only depends on the client's data and can leak more private information than the global model learned by the server. Additionally, we propose a novel model-based attribute inference attack in federated learning leveraging the local model reconstruction attack. We provide an analytical lower-bound for this attribute inference attack. Empirical results using real world datasets confirm that our local reconstruction attack works well for both regression and classification tasks. Moreover, we benchmark our novel attribute inference attack against the state-of-the-art attacks in federated learning. Our attack results in higher reconstruction accuracy especially when the clients' datasets are heterogeneous. Our work provides a new angle for designing powerful and explainable attacks to effectively quantify the privacy risk in FL.

In this paper, we propose a new annotation scheme to classify different types of clauses in Terms-and-Conditions contracts with the ultimate goal of supporting legal experts to quickly identify and assess problematic issues in this type of legal documents. To this end, we built a small corpus of Terms-and-Conditions contracts and finalized an annotation scheme of 14 categories, eventually reaching an inter-annotator agreement of 0.92. Then, for 11 of them, we experimented with binary classification tasks using few-shot prompting with a multilingual T5 and two fine-tuned versions of two BERT-based LLMs for Italian. Our experiments showed the feasibility of automatic classification of our categories by reaching accuracies ranging from .79 to .95 on validation tasks.

In this paper, we investigate the performance of ambient backscatter communication non-orthogonal multiple access (AmBC-NOMA)-assisted short packet communication for high-mobility vehicle-to-everything transmissions. In the proposed system, a roadside unit (RSU) transmits a superimposed signal to a typical NOMA user pair. Simultaneously, the backscatter device (BD) transmits its own signal towards the user pair by reflecting and modulating the RSU's superimposed signals. Due to vehicles' mobility, we consider realistic assumptions of time-selective fading and channel estimation errors. Theoretical expressions for the average block error rates (BLERs) of both users are derived. Furthermore, analysis and insights on transmit signal-to-noise ratio, vehicles' mobility, imperfect channel estimation, the reflection efficiency at the BD, and blocklength are provided. Numerical results validate the theoretical findings and reveal that the AmBC-NOMA system outperforms its orthogonal multiple access counterpart in terms of BLER performance.

In this letter, we present a novel bi-modal bi-copter robot called Skater, which is adaptable to air and various ground surfaces. Skater consists of a bi-copter moving along its longitudinal direction with two passive wheels on both sides. Using a longitudinally arranged bi-copter as the unified actuation system for both aerial and ground modes, this robot not only keeps a concise and lightweight mechanism but also possesses exceptional terrain traversing capability and strong steering capacity. Moreover, leveraging the vectored thrust characteristic of bi-copters, the Skater can actively generate the centripetal force needed for steering, enabling it to achieve stable movement even on slippery surfaces. Furthermore, we model the comprehensive dynamics of the Skater, analyze its differential flatness, and introduce a controller using nonlinear model predictive control for trajectory tracking. The outstanding performance of the system is verified by extensive real-world experiments and benchmark comparisons.

A ladder lottery, known as ``Amidakuji'' in Japan, is a common way to decide an assignment at random. In this paper, we investigate reconfiguration and enumeration problems of cyclic ladder lotteries. First, when a permutation $\pi$ and an optimal displacement vector $\bm{x}$ are given, we investigate the reconfiguration and enumeration problems of the ``optimal'' cyclic ladder lotteries of $\pi$ and $\bm{x}$. Next, for a give permutation $\pi$ we consider reconfiguration and enumeration problems of the optimal displacement vectors of $\pi$.

In this paper, we present a neural network-based approach for tracking and reconstructing the trajectories of baseball pitches from 2D video footage to 3D coordinates. We utilize OpenCV's CSRT algorithm to accurately track the baseball and fixed reference points in 2D video frames. These tracked pixel coordinates are then used as input features for our neural network model, which comprises multiple fully connected layers to map the 2D coordinates to 3D space. The model is trained on a dataset of labeled trajectories using a mean squared error loss function and the Adam optimizer, optimizing the network to minimize prediction errors. Our experimental results demonstrate that this approach achieves high accuracy in reconstructing 3D trajectories from 2D inputs. This method shows great potential for applications in sports analysis, coaching, and enhancing the accuracy of trajectory predictions in various sports.

In this paper we investigate the parameterized complexity of the task of counting and detecting occurrences of small patterns in unit disk graphs: Given an $n$-vertex unit disk graph $G$ with an embedding of ply $p$ (that is, the graph is represented as intersection graph with closed disks of unit size, and each point is contained in at most $p$ disks) and a $k$-vertex unit disk graph $P$, count the number of (induced) copies of $P$ in $G$. For general patterns $P$, we give an $2^{O(p k /\log k)}n^{O(1)}$ time algorithm for counting pattern occurrences. We show this is tight, even for ply $p=2$ and $k=n$: any $2^{o(n/\log n)}n^{O(1)}$ time algorithm violates the Exponential Time Hypothesis (ETH). For most natural classes of patterns, such as connected graphs and independent sets we present the following results: First, we give an $(pk)^{O(\sqrt{pk})}n^{O(1)}$ time algorithm, which is nearly tight under the ETH for bounded ply and many patterns. Second, for $p= k^{O(1)}$ we provide a Turing kernelization (i.e. we give a polynomial time preprocessing algorithm to reduce the instance size to $k^{O(1)}$). Our approach combines previous tools developed for planar subgraph isomorphism such as `efficient inclusion-exclusion' from [Nederlof STOC'20], and `isomorphisms checks' from [Bodlaender et al. ICALP'16] with a different separator hierarchy and a new bound on the number of non-isomorphic separations of small order tailored for unit disk graphs.

In this paper, we delve into several mechanisms employed by Transformer-based language models (LLMs) for factual recall tasks. We outline a pipeline consisting of three major steps: (1) Given a prompt ``The capital of France is,'' task-specific attention heads extract the topic token, such as ``France,'' from the context and pass it to subsequent MLPs. (2) As attention heads' outputs are aggregated with equal weight and added to the residual stream, the subsequent MLP acts as an ``activation,'' which either erases or amplifies the information originating from individual heads. As a result, the topic token ``France'' stands out in the residual stream. (3) A deep MLP takes ``France'' and generates a component that redirects the residual stream towards the direction of the correct answer, i.e., ``Paris.'' This procedure is akin to applying an implicit function such as ``get\_capital($X$),'' and the argument $X$ is the topic token information passed by attention heads. To achieve the above quantitative and qualitative analysis for MLPs, we proposed a novel analytic method aimed at decomposing the outputs of the MLP into components understandable by humans. Additionally, we observed a universal anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. The above interpretations are evaluated across diverse tasks spanning various domains of factual knowledge, using various language models from the GPT-2 families, 1.3B OPT, up to 7B Llama-2, and in both zero- and few-shot setups.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司