亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The deep learning models used for speaker verification rely heavily on large amounts of data and correct labeling. However, noisy (incorrect) labels often occur, which degrades the performance of the system. In this paper, we propose a novel two-stage learning method to filter out noisy labels from speaker datasets. Since a DNN will first fit data with clean labels, we first train the model with all data for several epochs. Then, based on this model, the model predictions are compared with the labels using our proposed the OR-Gate with top-k mechanism to select the data with clean labels and the selected data is used to train the model. This process is iterated until the training is completed. We have demonstrated the effectiveness of this method in filtering noisy labels through extensive experiments and have achieved excellent performance on the VoxCeleb (1 and 2) with different added noise rates.

相關內容

Existing person re-identification (re-ID) research mainly focuses on pedestrian identity matching across cameras in adjacent areas. However, in reality, it is inevitable to face the problem of pedestrian identity matching across long-distance scenes. The cross-camera pedestrian samples collected from long-distance scenes often have no positive samples. It is extremely challenging to use cross-camera negative samples to achieve cross-region pedestrian identity matching. Therefore, a novel domain-adaptive person re-ID method that focuses on cross-camera consistent discriminative feature learning under the supervision of unpaired samples is proposed. This method mainly includes category synergy co-promotion module (CSCM) and cross-camera consistent feature learning module (CCFLM). In CSCM, a task-specific feature recombination (FRT) mechanism is proposed. This mechanism first groups features according to their contributions to specific tasks. Then an interactive promotion learning (IPL) scheme between feature groups is developed and embedded in this mechanism to enhance feature discriminability. Since the control parameters of the specific task model are reduced after division by task, the generalization ability of the model is improved. In CCFLM, instance-level feature distribution alignment and cross-camera identity consistent learning methods are constructed. Therefore, the supervised model training is achieved under the style supervision of the target domain by exchanging styles between source-domain samples and target-domain samples, and the challenges caused by the lack of cross-camera paired samples are solved by utilizing cross-camera similar samples. In experiments, three challenging datasets are used as target domains, and the effectiveness of the proposed method is demonstrated through four experimental settings.

In this paper, we present a novel Single-class target-specific Adversarial attack called SingleADV. The goal of SingleADV is to generate a universal perturbation that deceives the target model into confusing a specific category of objects with a target category while ensuring highly relevant and accurate interpretations. The universal perturbation is stochastically and iteratively optimized by minimizing the adversarial loss that is designed to consider both the classifier and interpreter costs in targeted and non-targeted categories. In this optimization framework, ruled by the first- and second-moment estimations, the desired loss surface promotes high confidence and interpretation score of adversarial samples. By avoiding unintended misclassification of samples from other categories, SingleADV enables more effective targeted attacks on interpretable deep learning systems in both white-box and black-box scenarios. To evaluate the effectiveness of SingleADV, we conduct experiments using four different model architectures (ResNet-50, VGG-16, DenseNet-169, and Inception-V3) coupled with three interpretation models (CAM, Grad, and MASK). Through extensive empirical evaluation, we demonstrate that SingleADV effectively deceives the target deep learning models and their associated interpreters under various conditions and settings. Our experimental results show that the performance of SingleADV is effective, with an average fooling ratio of 0.74 and an adversarial confidence level of 0.78 in generating deceptive adversarial samples. Furthermore, we discuss several countermeasures against SingleADV, including a transfer-based learning approach and existing preprocessing defenses.

Deep learning technology has made great achievements in the field of image. In order to defend against malware attacks, researchers have proposed many Windows malware detection models based on deep learning. However, deep learning models are vulnerable to adversarial example attacks. Malware can generate adversarial malware with the same malicious function to attack the malware detection model and evade detection of the model. Currently, many adversarial defense studies have been proposed, but existing adversarial defense studies are based on image sample and cannot be directly applied to malware sample. Therefore, this paper proposes an adversarial malware defense method based on adversarial training. This method uses preprocessing to defend simple adversarial examples to reduce the difficulty of adversarial training. Moreover, this method improves the adversarial defense capability of the model through adversarial training. We experimented with three attack methods in two sets of datasets, and the results show that the method in this paper can improve the adversarial defense capability of the model without reducing the accuracy of the model.

Prior work has established test-time training (TTT) as a general framework to further improve a trained model at test time. Before making a prediction on each test instance, the model is trained on the same instance using a self-supervised task, such as image reconstruction with masked autoencoders. We extend TTT to the streaming setting, where multiple test instances - video frames in our case - arrive in temporal order. Our extension is online TTT: The current model is initialized from the previous model, then trained on the current frame and a small window of frames immediately before. Online TTT significantly outperforms the fixed-model baseline for four tasks, on three real-world datasets. The relative improvement is 45% and 66% for instance and panoptic segmentation. Surprisingly, online TTT also outperforms its offline variant that accesses more information, training on all frames from the entire test video regardless of temporal order. This differs from previous findings using synthetic videos. We conceptualize locality as the advantage of online over offline TTT. We analyze the role of locality with ablations and a theory based on bias-variance trade-off.

Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司