亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mitotic activity is a crucial proliferation biomarker for the diagnosis and prognosis of different types of cancers. Nevertheless, mitosis counting is a cumbersome process for pathologists, prone to low reproducibility, due to the large size of augmented biopsy slides, the low density of mitotic cells, and pattern heterogeneity. To improve reproducibility, deep learning methods have been proposed in the last years using convolutional neural networks. However, these methods have been hindered by the process of data labelling, which usually solely consist of the mitosis centroids. Therefore, current literature proposes complex algorithms with multiple stages to refine the labels at pixel level, and to reduce the number of false positives. In this work, we propose to avoid complex scenarios, and we perform the localization task in a weakly supervised manner, using only image-level labels on patches. The results obtained on the publicly available TUPAC16 dataset are competitive with state-of-the-art methods, using only one training phase. Our method achieves an F1-score of 0.729 and challenges the efficiency of previous methods, which required multiple stages and strong mitosis location information.

相關內容

Motion planning for autonomous vehicles sharing the road with human drivers remains challenging. The difficulty arises from three challenging aspects: human drivers are 1) multi-modal, 2) interacting with the autonomous vehicle, and 3) actively making decisions based on the current state of the traffic scene. We propose a motion planning framework based on Branch Model Predictive Control to deal with these challenges. The multi-modality is addressed by considering multiple future outcomes associated with different decisions taken by the human driver. The interactive nature of humans is considered by modeling them as reactive agents impacted by the actions of the autonomous vehicle. Finally, we consider a model developed in human neuroscience studies as a possible way of encoding the decision making process of human drivers. We present simulation results in various scenarios, showing the advantages of the proposed method and its ability to plan assertive maneuvers that convey intent to humans.

Localization is a key challenge in many robotics applications. In this work we explore LIDAR-based global localization in both urban and natural environments and develop a method suitable for online application. Our approach leverages efficient deep learning architecture capable of learning compact point cloud descriptors directly from 3D data. The method uses an efficient feature space representation of a set of segmented point clouds to match between the current scene and the prior map. We show that down-sampling in the inner layers of the network can significantly reduce computation time without sacrificing performance. We present substantial evaluation of LIDAR-based global localization methods on nine scenarios from six datasets varying between urban, park, forest, and industrial environments. Part of which includes post-processed data from 30 sequences of the Oxford RobotCar dataset, which we make publicly available. Our experiments demonstrate a factor of three reduction of computation, 70% lower memory consumption with marginal loss in localization frequency. The proposed method allows the full pipeline to run on robots with limited computation payload such as drones, quadrupeds, and UGVs as it does not require a GPU at run time.

This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning' learner. We then study how different network architectures trained by (S)GD perform under GOTU and provide both theoretical and experimental evidence that for a class of network models including instances of Transformers, random features models, and diagonal linear networks, a min-degree-interpolator (MDI) is learned on the unseen. We also provide evidence that other instances with larger learning rates or mean-field networks reach leaky MDIs. These findings lead to two implications: (1) we provide an explanation to the length generalization problem (e.g., Anil et al. 2022); (2) we introduce a curriculum learning algorithm called Degree-Curriculum that learns monomials more efficiently by incrementing supports.

This report introduces our winning solution of the real-robot phase of the Real Robot Challenge (RRC) 2022. The goal of this year's challenge is to solve dexterous manipulation tasks with offline reinforcement learning (RL) or imitation learning. To this end, participants are provided with datasets containing dozens of hours of robotic data. For each task an expert and a mixed dataset are provided. In our experiments, when learning from the expert datasets, we find standard Behavioral Cloning (BC) outperforms state-of-the-art offline RL algorithms. When learning from the mixed datasets, BC performs poorly, as expected, while surprisingly offline RL performs suboptimally, failing to match the average performance of the baseline model used for collecting the datasets. To remedy this, motivated by the strong performance of BC on the expert datasets we elect to use a semi-supervised classification technique to filter the subset of expert data out from the mixed datasets, and subsequently perform BC on this extracted subset of data. To further improve results, in all settings we use a simple data augmentation method that exploits the geometric symmetry of the RRC physical robotic environment. Our submitted BC policies each surpass the mean return of their respective raw datasets, and the policies trained on the filtered mixed datasets come close to matching the performances of those trained on the expert datasets.

Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since this task usually requires one or more specialists for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissue as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce a new sampling methodology for selecting relevant images from a larger non-annotated dataset in a way that evenly considers both prototypical as well as atypical samples. The methodology involves the generation of a uniform grid from a feature space representing the samples, which is then used for randomly drawing relevant images. The selected images provide a uniform cover of the original dataset, and thus define a heterogeneous set of images that can be annotated and used for training supervised segmentation algorithms. We provide a case example by creating a dataset containing a representative set of blood vessel microscopy images selected from a larger dataset containing thousands of images.

Aiming to produce reinforcement learning (RL) policies that are human-interpretable and can generalize better to novel scenarios, Trivedi et al. (2021) present a method (LEAPS) that first learns a program embedding space to continuously parameterize diverse programs from a pre-generated program dataset, and then searches for a task-solving program in the learned program embedding space when given a task. Despite encouraging results, the program policies that LEAPS can produce are limited by the distribution of the program dataset. Furthermore, during searching, LEAPS evaluates each candidate program solely based on its return, failing to precisely reward correct parts of programs and penalize incorrect parts. To address these issues, we propose to learn a meta-policy that composes a series of programs sampled from the learned program embedding space. By composing programs, our proposed method can produce program policies that describe out-of-distributionally complex behaviors and directly assign credits to programs that induce desired behaviors. We design and conduct extensive experiments in the Karel domain. The experimental results show that our proposed framework outperforms baselines. The ablation studies confirm the limitations of LEAPS and justify our design choices.

Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

北京阿比特科技有限公司