Intelligent robot is the ultimate goal in the robotics field. Existing works leverage learning-based or optimization-based methods to accomplish human-defined tasks. However, the challenge of enabling robots to explore various environments autonomously remains unresolved. In this work, we propose a framework named GExp, which enables robots to explore and learn autonomously without human intervention. To achieve this goal, we devise modules including self-exploration, knowledge-base-building, and close-loop feedback based on foundation models. Inspired by the way that infants interact with the world, GExp encourages robots to understand and explore the environment with a series of self-generated tasks. During the process of exploration, the robot will acquire skills from beneficial experiences that are useful in the future. GExp provides robots with the ability to solve complex tasks through self-exploration. GExp work is independent of prior interactive knowledge and human intervention, allowing it to adapt directly to different scenarios, unlike previous studies that provided in-context examples as few-shot learning. In addition, we propose a workflow of deploying the real-world robot system with self-learned skills as an embodied assistant.
We present a new method for causal discovery in linear structural vector autoregressive models. We adapt an idea designed for independent observations to the case of time series while retaining its favorable properties, i.e., explicit error control for false causal discovery, at least asymptotically. We apply our method to several real-world bivariate time series datasets and discuss its findings which mostly agree with common understanding. The arrow of time in a model can be interpreted as background knowledge on possible causal mechanisms. Hence, our ideas could be extended to incorporating different background knowledge, even for independent observations.
This paper focuses on discussing Newton's method and its hybrid with machine learning for the steady state Navier-Stokes Darcy model discretized by mixed element methods. First, a Newton iterative method is introduced for solving the relative discretized problem. It is proved technically that this method converges quadratically with the convergence rate independent of the finite element mesh size, under certain standard conditions. Later on, a deep learning algorithm is proposed for solving this nonlinear coupled problem. Following the ideas of an earlier work by Huang, Wang and Yang (2020), an Int-Deep algorithm is constructed by combining the previous two methods so as to further improve the computational efficiency and robustness. A series of numerical examples are reported to show the numerical performance of the proposed methods.
During the evolution of large models, performance evaluation is necessarily performed to assess their capabilities and ensure safety before practical application. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, aimed at fulfilling the testing needs of large models with enhanced capabilities. The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence. To assess the multidimensional intelligence of large models, the AGI tests consist of a battery of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.
This study introduces a novel machine learning framework, integrating domain knowledge, to accurately predict the bearing capacity of CFSTs, bridging the gap between traditional engineering and machine learning techniques. Utilizing a comprehensive database of 2621 experimental data points on CFSTs, we developed a Domain Knowledge Enhanced Neural Network (DKNN) model. This model incorporates advanced feature engineering techniques, including Pearson correlation, XGBoost, and Random tree algorithms. The DKNN model demonstrated a marked improvement in prediction accuracy, with a Mean Absolute Percentage Error (MAPE) reduction of over 50% compared to existing models. Its robustness was confirmed through extensive performance assessments, maintaining high accuracy even in noisy environments. Furthermore, sensitivity and SHAP analysis were conducted to assess the contribution of each effective parameter to axial load capacity and propose design recommendations for the diameter of cross-section, material strength range and material combination. This research advances CFST predictive modelling, showcasing the potential of integrating machine learning with domain expertise in structural engineering. The DKNN model sets a new benchmark for accuracy and reliability in the field.
The use of deep learning models in computational biology has increased massively in recent years, and is expected to do so further with the current advances in fields like Natural Language Processing. These models, although able to draw complex relations between input and target, are also largely inclined to learn noisy deviations from the pool of data used during their development. In order to assess their performance on unseen data (their capacity to generalize), it is common to randomly split the available data in development (train/validation) and test sets. This procedure, although standard, has lately been shown to produce dubious assessments of generalization due to the existing similarity between samples in the databases used. In this work, we present SpanSeq, a database partition method for machine learning that can scale to most biological sequences (genes, proteins and genomes) in order to avoid data leakage between sets. We also explore the effect of not restraining similarity between sets by reproducing the development of the state-of-the-art model DeepLoc, not only confirming the consequences of randomly splitting databases on the model assessment, but expanding those repercussions to the model development. SpanSeq is available for downloading and installing at //github.com/genomicepidemiology/SpanSeq.
This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.
The multiple testing problem appears when fitting multivariate generalized linear models for high dimensional data. We show that the sign-flip test can be combined with permutation-based procedures for assessing the multiple testing problem
The performance of machine learning classification algorithms are evaluated by estimating metrics, often from the confusion matrix, using training data and cross-validation. However, these do not prove that the best possible performance has been achieved. Fundamental limits to error rates can be estimated using information distance measures. To this end, the confusion matrix has been formulated to comply with the Chernoff-Stein Lemma. This links the error rates to the Kullback-Leibler divergences between the probability density functions describing the two classes. This leads to a key result that relates Cohen's Kappa to the Resistor Average Distance which is the parallel resistor combination of the two Kullback-Leibler divergences. The Resistor Average Distance has units of bits and is estimated from the same training data used by the classification algorithm, using kNN estimates of the KullBack-Leibler divergences. The classification algorithm gives the confusion matrix and Kappa. Theory and methods are discussed in detail and then applied to Monte Carlo data and real datasets. Four very different real datasets - Breast Cancer, Coronary Heart Disease, Bankruptcy, and Particle Identification - are analysed, with both continuous and discrete values, and their classification performance compared to the expected theoretical limit. In all cases this analysis shows that the algorithms could not have performed any better due to the underlying probability density functions for the two classes. Important lessons are learnt on how to predict the performance of algorithms for imbalanced data using training datasets that are approximately balanced. Machine learning is very powerful but classification performance ultimately depends on the quality of the data and the relevance of the variables to the problem.
The variational quantum eigensolver (VQE) is a promising candidate that brings practical benefits from quantum computing. However, the required bandwidth in/out of a cryostat is a limiting factor to scale cryogenic quantum computers. We propose a tailored counter-based module with single flux quantum circuits in 4-K stage which precomputes a part of VQE calculation and reduces the amount of inter-temperature communication. The evaluation shows that our system reduces the required bandwidth by 97%, and with this drastic reduction, total power consumption is reduced by 93% in the case where 277 VQE programs are executed in parallel on a 10000-qubit machine.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.