亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the landscape of devices that interact with the electrical grid expands, also the complexity of the scenarios that arise from these interactions increases. Validation methods and tools are typically domain specific and are designed to approach mainly component level testing. For this kind of applications, software and hardware-in-the-loop based simulations as well as lab experiments are all tools that allow testing with different degrees of accuracy at various stages in the development life-cycle. However, things are vastly different when analysing the tools and the methodology available for performing system-level validation. Until now there are no available well-defined approaches for testing complex use cases involving components from different domains. Smart grid applications would typically include a relatively large number of physical devices, software components, as well as communication technology, all working hand in hand. This paper explores the possibilities that are opened in terms of testing by the integration of a real-time simulator into co-simulation environments. Three practical implementations of such systems together with performance metrics are discussed. Two control-related examples are selected in order to show the capabilities of the proposed approach.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

The energy landscape of high-dimensional non-convex optimization problems is crucial to understanding the effectiveness of modern deep neural network architectures. Recent works have experimentally shown that two different solutions found after two runs of a stochastic training are often connected by very simple continuous paths (e.g., linear) modulo a permutation of the weights. In this paper, we provide a framework theoretically explaining this empirical observation. Based on convergence rates in Wasserstein distance of empirical measures, we show that, with high probability, two wide enough two-layer neural networks trained with stochastic gradient descent are linearly connected. Additionally, we express upper and lower bounds on the width of each layer of two deep neural networks with independent neuron weights to be linearly connected. Finally, we empirically demonstrate the validity of our approach by showing how the dimension of the support of the weight distribution of neurons, which dictates Wasserstein convergence rates is correlated with linear mode connectivity.

A common explanation for the failure of out-of-distribution (OOD) generalization is that the model trained with empirical risk minimization (ERM) learns spurious features instead of invariant features. However, several recent studies challenged this explanation and found that deep networks may have already learned sufficiently good features for OOD generalization. Despite the contradictions at first glance, we theoretically show that ERM essentially learns both spurious and invariant features, while ERM tends to learn spurious features faster if the spurious correlation is stronger. Moreover, when fed the ERM learned features to the OOD objectives, the invariant feature learning quality significantly affects the final OOD performance, as OOD objectives rarely learn new features. Therefore, ERM feature learning can be a bottleneck to OOD generalization. To alleviate the reliance, we propose Feature Augmented Training (FeAT), to enforce the model to learn richer features ready for OOD generalization. FeAT iteratively augments the model to learn new features while retaining the already learned features. In each round, the retention and augmentation operations are performed on different subsets of the training data that capture distinct features. Extensive experiments show that FeAT effectively learns richer features thus boosting the performance of various OOD objectives.

Cluster-randomized trials often involve units that are irregularly distributed in space without well-separated communities. In these settings, cluster construction is a critical aspect of the design due to the potential for cross-cluster interference. The existing literature relies on partial interference models, which take clusters as given and assume no cross-cluster interference. We relax this assumption by allowing interference to decay with geographic distance between units. This induces a bias-variance trade-off: constructing fewer, larger clusters reduces bias due to interference but increases variance. We propose new estimators that exclude units most potentially impacted by cross-cluster interference and show that this substantially reduces asymptotic bias relative to conventional difference-in-means estimators. We then study the design of clusters to optimize the estimators' rates of convergence. We provide formal justification for a new design that chooses the number of clusters to balance the asymptotic bias and variance of our estimators and uses unsupervised learning to automate cluster construction.

Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic "modules," different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide eight robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also discuss how DMPs and EDAs might be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.

Convergence and compactness properties of approximate solutions to elliptic partial differential computed with the hybridized discontinuous Galerkin (HDG) are established. While it is known that solutions computed using the HDG scheme converge at optimal rates to smooth solutions, this does not establish the stability of the method or convergence to solutions with minimal regularity. The compactness and convergence results show that the HDG scheme can be utilized for the solution of nonlinear problems and linear problems with non-smooth coefficients on domains with reentrant corners.

As autonomous driving technology matures, end-to-end methodologies have emerged as a leading strategy, promising seamless integration from perception to control via deep learning. However, existing systems grapple with challenges such as unexpected open set environments and the complexity of black-box models. At the same time, the evolution of deep learning introduces larger, multimodal foundational models, offering multi-modal visual and textual understanding. In this paper, we harness these multimodal foundation models to enhance the robustness and adaptability of autonomous driving systems, enabling out-of-distribution, end-to-end, multimodal, and more explainable autonomy. Specifically, we present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text. To do so, we introduce a method to extract nuanced spatial (pixel/patch-aligned) features from transformers to enable the encapsulation of both spatial and semantic features. Our approach (i) demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations, and (ii) allows the incorporation of latent space simulation (via text) for improved training (data augmentation via text) and policy debugging. We encourage the reader to check our explainer video at //www.youtube.com/watch?v=4n-DJf8vXxo&feature=youtu.be and to view the code and demos on our project webpage at //drive-anywhere.github.io/.

The knowledge of channel covariance matrices is crucial to the design of intelligent reflecting surface (IRS) assisted communication. However, channel covariance matrices may change suddenly in practice. This letter focuses on the detection of the above change in IRS-assisted communication. Specifically, we consider the uplink communication system consisting of a single-antenna user (UE), an IRS, and a multi-antenna base station (BS). We first categorize two types of channel covariance matrix changes based on their impact on system design: Type I change, which denotes the change in the BS receive covariance matrix, and Type II change, which denotes the change in the IRS transmit/receive covariance matrix. Secondly, a powerful method is proposed to detect whether a Type I change occurs, a Type II change occurs, or no change occurs. The effectiveness of our proposed scheme is verified by numerical results.

Counterfactual explanations play an important role in detecting bias and improving the explainability of data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this work we derive an iterative method to calculate robust CEs, i.e. CEs that remain valid even after the features are slightly perturbed. To this end, our method provides a whole region of CEs allowing the user to choose a suitable recourse to obtain a desired outcome. We use algorithmic ideas from robust optimization and prove convergence results for the most common machine learning methods including logistic regression, decision trees, random forests, and neural networks. Our experiments show that our method can efficiently generate globally optimal robust CEs for a variety of common data sets and classification models.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司