Collaborative edge computing (CEC) is an emerging paradigm for heterogeneous devices to collaborate on edge computation jobs. For congestible links and computing units, delay-optimal forwarding and offloading for service chain tasks (e.g., DNN with vertical split) in CEC remains an open problem. In this paper, we formulate the service chain forwarding and offloading in CEC with arbitrary topology and heterogeneous transmission/computation capability, and aim to minimize the network aggregated cost. We consider congestion-aware nonlinear cost functions that cover various performance metrics and constraints, such as average queueing delay with limited processor capacity. We solve the non-convex optimization problem globally by analyzing the KKT condition and proposing a sufficiency optimality condition. We propose a polynomial-time distributed algorithm that converges to the global optimum. The algorithm adapts to changes in input rates and network topology, and can be implemented as an online algorithm. Numerical evaluation shows that our method significantly outperforms baselines in multiple network instances, especially in congested scenarios.
One of the most important challenges of Smart City Applications is to adapt the system to interact with non-expert users. Robot imitation frameworks aim to simplify and reduce times of robot programming by allowing users to program directly through demonstrations. In classical frameworks, actions are modeled using joint or Cartesian space trajectories. Other features, such as visual ones, are not always well represented with these pure geometrical approaches. Continuous Goal-Directed Actions (CGDA) is an alternative to these methods, as it encodes actions as changes of any feature that can be extracted from the environment. As a consequence of this, the robot joint trajectories for execution must be fully computed to comply with this feature-agnostic encoding. This is achieved using Evolutionary Algorithms (EA), which usually requires too many evaluations to perform this evolution step in the actual robot. Current strategies involve performing evaluations in a simulation, transferring the final joint trajectory to the actual robot. Smart City applications involve working in highly dynamic and complex environments, where having a precise model is not always achievable. Our goal is to study the tractability of performing these evaluations directly in a real-world scenario. Two different approaches to reduce the number of evaluations using EA, are proposed and compared. In the first approach, Particle Swarm Optimization (PSO)-based methods have been studied and compared within CGDA: naive PSO, Fitness Inheritance PSO (FI-PSO), and Adaptive Fuzzy Fitness Granulation with PSO (AFFG-PSO). The second approach studied the introduction of geometrical and velocity constraints within CGDA. The effects of both approaches were analyzed and compared in the wax and paint actions, two CGDA commonly studied use cases. Results from this paper depict an important reduction in the number of evaluations.
This work considers the non-interactive source simulation problem (NISS). In the standard NISS scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$. Two variations of the standard NISS scenario are considered. In the first variation, in addition to $(X^d,Y^d)$ the agents have access to a shared Bell state. The agents each measure their respective state, using a measurement of their choice, and use its classical output along with $(X^d,Y^d)$ to simulate the target distribution. This scenario is called the entanglement-assisted NISS (EA-NISS). In the second variation, the agents have access to a classical common random bit $Z$, in addition to $(X^d,Y^d)$. This scenario is called the classical common randomness NISS (CR-NISS). It is shown that for binary-output NISS scenarios, the set of feasible distributions for EA-NISS and CR-NISS are equal with each other. Hence, there is not quantum advantage in these EA-NISS scenarios. For non-binary output NISS scenarios, it is shown through an example that there are distributions that are feasible in EA-NISS but not in CR-NISS. This shows that there is a quantum advantage in non-binary output EA-NISS.
Recommender systems (RS) have become essential tools for mitigating information overload in a range of real-world scenarios. Recent trends in RS have seen a paradigm shift, moving the spotlight from model-centric innovations to the importance of data quality and quantity. This evolution has given rise to the concept of data-centric recommender systems (Data-Centric RS), marking a significant development in the field. This survey provides the first systematic overview of Data-Centric RS, covering 1) the foundational concepts of recommendation data and Data-Centric RS; 2) three primary issues in recommendation data; 3) recent research developed to address these issues; and 4) several potential future directions in Data-Centric RS.
Reconstructing natural speech from neural activity is vital for enabling direct communication via brain-computer interfaces. Previous efforts have explored the conversion of neural recordings into speech using complex deep neural network (DNN) models trained on extensive neural recording data, which is resource-intensive under regular clinical constraints. However, achieving satisfactory performance in reconstructing speech from limited-scale neural recordings has been challenging, mainly due to the complexity of speech representations and the neural data constraints. To overcome these challenges, we propose a novel transfer learning framework for neural-driven speech reconstruction, called Neural2Speech, which consists of two distinct training phases. First, a speech autoencoder is pre-trained on readily available speech corpora to decode speech waveforms from the encoded speech representations. Second, a lightweight adaptor is trained on the small-scale neural recordings to align the neural activity and the speech representation for decoding. Remarkably, our proposed Neural2Speech demonstrates the feasibility of neural-driven speech reconstruction even with only 20 minutes of intracranial data, which significantly outperforms existing baseline methods in terms of speech fidelity and intelligibility.
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs.
Due to recent development in quantum computing, the invention of a large quantum computer is no longer a distant future. Quantum computing severely threatens modern cryptography, as the hard mathematical problems beneath classic public-key cryptosystems can be solved easily by a sufficiently large quantum computer. As such, researchers have proposed PQC based on problems that even quantum computers cannot efficiently solve. Generally, post-quantum encryption and signatures can be hard to compute. This could potentially be a problem for IoT, which usually consist lightweight devices with limited computational power. In this paper, we survey existing literature on the performance for PQC in resource-constrained devices to understand the severeness of this problem. We also review recent proposals to optimize PQC algorithms for resource-constrained devices. Overall, we find that whilst PQC may be feasible for reasonably lightweight IoT, proposals for their optimization seem to lack standardization. As such, we suggest future research to seek coordination, in order to ensure an efficient and safe migration toward IoT for the post-quantum era.
Deep Neural Network (DNN) models when implemented on executing devices as the inference engines are susceptible to Fault Injection Attacks (FIAs) that manipulate model parameters to disrupt inference execution with disastrous performance. This work introduces Contrastive Learning (CL) of visual representations i.e., a self-supervised learning approach into the deep learning training and inference pipeline to implement DNN inference engines with self-resilience under FIAs. Our proposed CL based FIA Detection and Recovery (CFDR) framework features (i) real-time detection with only a single batch of testing data and (ii) fast recovery effective even with only a small amount of unlabeled testing data. Evaluated with the CIFAR-10 dataset on multiple types of FIAs, our CFDR shows promising detection and recovery effectiveness.
Data storage in DNA is developing as a possible solution for archival digital data. Recently, to further increase the potential capacity of DNA-based data storage systems, the combinatorial composite DNA synthesis method was suggested. This approach extends the DNA alphabet by harnessing short DNA fragment reagents, known as shortmers. The shortmers are building blocks of the alphabet symbols, consisting of a fixed number of shortmers. Thus, when information is read, it is possible that one of the shortmers that forms part of the composition of a symbol is missing and therefore the symbol cannot be determined. In this paper, we model this type of error as a type of asymmetric error and propose code constructions that can correct such errors in this setup. We also provide a lower bound on the redundancy of such error-correcting codes and give an explicit encoder and decoder pair for our construction. Our suggested error model is also supported by an analysis of data from actual experiments that produced DNA according to the combinatorial scheme. Lastly, we also provide a statistical evaluation of the probability of observing such error events, as a function of read depth.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.