亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Byzantine consensus allows n processes to decide on a common value, in spite of arbitrary failures. The seminal Dolev-Reischuk bound states that any deterministic solution to Byzantine consensus exchanges Omega(n^2) bits. In recent years, great advances have been made in deterministic Byzantine agreement for partially synchronous networks, with state-of-the-art cryptographic solutions achieving O(n^2 \kappa) bits (where $\kappa$ is the security parameter) and nearly matching the lower bound. In contrast, for synchronous networks, optimal solutions with O(n^2) bits, with no cryptography and the same failure tolerance, have been known for more than three decades. Can this gap in network models be closed? In this paper, we present Repeater, the first generic transformation of Byzantine agreement algorithms from synchrony to partial synchrony. Repeater is modular, relying on existing and novel algorithms for its sub-modules. With the right choice of modules, Repeater requires no additional cryptography, is optimally resilient (n = 3t+1, where t is the maximum number of failures) and, for constant-size inputs, preserves the worst-case per-process bit complexity of the transformed synchronous algorithm. Leveraging Repeater, we present the first partially synchronous algorithm that (1) achieves optimal bit complexity (O(n^2) bits), (2) resists a computationally unbounded adversary (no cryptography), and (3) is optimally-resilient (n = 3t+1), thus showing that the Dolev-Reischuk bound is tight in partial synchrony. Moreover, we adapt Repeater for long inputs, introducing several new algorithms with improved complexity and weaker (or completely absent) cryptographic assumptions.

相關內容

Physics-compliant models of RIS-parametrized channels assign a load-terminated port to each RIS element. For conventional diagonal RIS (D-RIS), each auxiliary port is terminated by its own independent and individually tunable load (i.e., independent of the other auxiliary ports). For beyond-diagonal RIS (BD-RIS), the auxiliary ports are terminated by a tunable load circuit which couples the auxiliary ports to each other. Here, we point out that a physics-compliant model of the load circuit of a BD-RIS takes the same form as a physics-compliant model of a D-RIS-parametrized radio environment: a multi-port network with a subset of ports terminated by individually tunable loads (independent of each other). Consequently, we recognize that a BD-RIS-parametrized radio environment can be understood as a multi-port cascade network (i.e., the cascade of radio environment with load circuit) terminated by individually tunable loads (independent of each other). Hence, the BD-RIS problem can be mapped into the original D-RIS problem by replacing the radio environment with the cascade of radio environment and load circuit. The insight that BD-RIS can be physics-compliantly analyzed with the conventional D-RIS formalism implies that (i) the same optimization protocols as for D-RIS can be used for the BD-RIS case, and (ii) it is unclear if existing comparisons between BD-RIS and D-RIS are fair because for a fixed number of RIS elements, a BD-RIS has usually more tunable lumped elements.

We prove asymptotic results for a modification of the cross-entropy estimator originally introduced by Ziv and Merhav in the Markovian setting in 1993. Our results concern a more general class of decoupled measures on shift spaces over a finite alphabet and in particular imply strong asymptotic consistency of the modified estimator for all pairs of functions of stationary, irreducible, finite-state Markov chains satisfying a mild decay condition. Our approach is based on the study of a rescaled cumulant-generating function called the cross-entropic pressure, importing to information theory some techniques from the study of large deviations within the thermodynamic formalism.

This paper achieves noteworthy progress in the realm of abstract reasoning, particularly in addressing Raven's Progressive Matrices (RPM) and Bongard-Logo challenges. Initially, we introduce Lico-Net, a novel baseline model that resolves RPM problems with remarkable accuracy. Leveraging this foundation, we advance with the D3C approach, which advocates representing the underlying concepts in abstract reasoning problems through distributions. This perspective enhances the performance of both Lico-Net and a baseline model excelling in Bongard-Logo tasks. To bolster the computational efficiency of D3C, we present the D3C-cos variant, offering a streamlined yet precise solution. Furthermore, we propose the D2C method, redefining conceptual boundaries within these domains and bridging the divide between high-level abstractions and their lower-dimensional counterparts. Finally, we extend our methodology to D4C, employing adversarial techniques to refine conceptual boundaries further and demonstrate substantial improvements in both RPM and Bongard-Logo challenges. Overall, our contributions present a fresh outlook and practical advancements in the field of abstract reasoning.

Phylogenetics is a branch of computational biology that studies the evolutionary relationships among biological entities. Its long history and numerous applications notwithstanding, inference of phylogenetic trees from sequence data remains challenging: the high complexity of tree space poses a significant obstacle for the current combinatorial and probabilistic techniques. In this paper, we adopt the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and Bayesian phylogenetic inference. Because GFlowNets are well-suited for sampling complex combinatorial structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies and evolutionary distances. We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets. PhyloGFN is competitive with prior works in marginal likelihood estimation and achieves a closer fit to the target distribution than state-of-the-art variational inference methods. Our code is available at //github.com/zmy1116/phylogfn.

We describe a family of iterative algorithms that involve the repeated execution of discrete and inverse discrete Fourier transforms. One interesting member of this family is motivated by the discrete Fourier transform uncertainty principle and involves the application of a sparsification operation to both the real domain and frequency domain data with convergence obtained when real domain sparsity hits a stable pattern. This sparsification variant has practical utility for signal denoising, in particular the recovery of a periodic spike signal in the presence of Gaussian noise. General convergence properties and denoising performance relative to existing methods are demonstrated using simulation studies. An R package implementing this technique and related resources can be found at //hrfrost.host.dartmouth.edu/IterativeFT.

In the search for highly efficient decoders for short LDPC codes approaching maximum likelihood performance, a relayed decoding strategy, specifically activating the ordered statistics decoding process upon failure of a neural min-sum decoder, is enhanced by instilling three innovations. Firstly, soft information gathered at each step of the neural min-sum decoder is leveraged to forge a new reliability measure using a convolutional neural network. This measure aids in constructing the most reliable basis of ordered statistics decoding, bolstering the decoding process by excluding error-prone bits or concentrating them in a smaller area. Secondly, an adaptive ordered statistics decoding process is introduced, guided by a derived decoding path comprising prioritized blocks, each containing distinct test error patterns. The priority of these blocks is determined from the statistical data during the query phase. Furthermore, effective complexity management methods are devised by adjusting the decoding path's length or refining constraints on the involved blocks. Thirdly, a simple auxiliary criterion is introduced to reduce computational complexity by minimizing the number of candidate codewords before selecting the optimal estimate. Extensive experimental results and complexity analysis strongly support the proposed framework, demonstrating its advantages in terms of high throughput, low complexity, independence from noise variance, in addition to superior decoding performance.

We prove the uniform convergence of the geometric multigrid V-cycle for hybrid high-order (HHO) and other discontinuous skeletal methods. Our results generalize previously established results for HDG methods, and our multigrid method uses standard smoothers and local solvers that are bounded, convergent, and consistent. We use a weak version of elliptic regularity in our proofs. Numerical experiments confirm our theoretical results.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

Functional integral representations for solutions of the motion equations for wall-bounded incompressible viscous flows, expressed (implicitly) in terms of distributions of solutions to stochastic differential equations of McKean-Vlasov type, are established by using a perturbation technique. These representations are used to obtain exact random vortex dynamics for wall-bounded viscous flows. Numerical schemes therefore are proposed and the convergence of the numerical schemes for random vortex dynamics with an additional force term is established. Several numerical experiments are carried out for demonstrating the motion of a viscous flow within a thin layer next to the fluid boundary.

Detecting a diverse range of objects under various driving scenarios is essential for the effectiveness of autonomous driving systems. However, the real-world data collected often lacks the necessary diversity presenting a long-tail distribution. Although synthetic data has been utilized to overcome this issue by generating virtual scenes, it faces hurdles such as a significant domain gap and the substantial efforts required from 3D artists to create realistic environments. To overcome these challenges, we present ARSim, a fully automated, comprehensive, modular framework designed to enhance real multi-view image data with 3D synthetic objects of interest. The proposed method integrates domain adaptation and randomization strategies to address covariate shift between real and simulated data by inferring essential domain attributes from real data and employing simulation-based randomization for other attributes. We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it. Illumination is achieved by estimating light distribution from multiple images capturing the surroundings of the vehicle. Camera parameters from real data are employed to render synthetic assets in each frame. The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles. Experimental results on various AV perception tasks demonstrate the superior performance of networks trained on the augmented dataset.

北京阿比特科技有限公司