Research on Multi-modal Large Language Models (MLLMs) towards the multi-image cross-modal instruction has received increasing attention and made significant progress, particularly in scenarios involving closely resembling images (e.g., change captioning). Existing MLLMs typically follow a two-step process in their pipelines: first, extracting visual tokens independently for each input image, and then aligning these visual tokens from different images with the Large Language Model (LLM) in its textual feature space. However, the independent extraction of visual tokens for each image may result in different semantics being prioritized for different images in the first step, leading to a lack of preservation of linking information among images for subsequent LLM analysis. This issue becomes more serious in scenarios where significant variations exist among the images (e.g., visual storytelling). To address this challenge, we introduce Semantic Alignment for Multi-modal large language models (SAM). By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis and align the semantics of different images before feeding them into LLM. As the test bed, we propose a large-scale dataset named MmLINK consisting of 69K samples. Different from most existing datasets for MLLMs fine-tuning, our MmLINK dataset comprises multi-modal instructions with significantly diverse images. Extensive experiments on the group captioning task and the storytelling task prove the effectiveness of our SAM model, surpassing the state-of-the-art methods by a large margin (+37% for group captioning and +22% for storytelling on CIDEr score). Project page: //mccartney01.github.io/SAM.
Batched sparse (BATS) code is a class of batched network code that can achieve a close-to-optimal rate when an optimal degree distribution is provided. We observed that most probability masses in this optimal distribution are very small, i.e., the distribution "looks" sparse. In this paper, we investigate the sparsity optimization of degree distribution for BATS codes that produces sparse degree distributions. There are many advantages to use a sparse degree distribution, say, it is robust to precision errors when sampling the degree distribution during encoding and decoding in practice. We discuss a few heuristics and also a way to obtain an exact sparsity solution. These approaches give a trade-off between computational time and achievable rate, thus give us the flexibility to adopt BATS codes in various scenarios, e.g., device with limited computational power, stable channel condition, etc.
In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance. Most present learned techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context. However, extant methods are highly dependent on the fixed hand-crafted causal context. The question of how to guide the auto-encoder to generate a more effective causal context benefit for the autoregressive entropy models is worth exploring. In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss (CCA-loss). By imposing the CCA-loss, we enable the neural network to spontaneously adjust important information into the early stage of the autoregressive entropy model. Furthermore, as transformer technology develops remarkably, variants of which have been adopted by many state-of-the-art (SOTA) LIC techniques. The existing computing devices have not adapted the calculation of the attention mechanism well, which leads to a burden on computation quantity and inference latency. To overcome it, we establish a convolutional neural network (CNN) image compression model and adopt the unevenly channel-wise grouped strategy for high efficiency. Ultimately, the proposed CNN-based LIC network trained with our Causal Context Adjustment loss attains a great trade-off between inference latency and rate-distortion performance.
We present an accurate and GPU-accelerated Stereo Visual SLAM design called Jetson-SLAM. It exhibits frame-processing rates above 60FPS on NVIDIA's low-powered 10W Jetson-NX embedded computer and above 200FPS on desktop-grade 200W GPUs, even in stereo configuration and in the multiscale setting. Our contributions are threefold: (i) a Bounded Rectification technique to prevent tagging many non-corner points as a corner in FAST detection, improving SLAM accuracy. (ii) A novel Pyramidal Culling and Aggregation (PyCA) technique that yields robust features while suppressing redundant ones at high speeds by harnessing a GPU device. PyCA uses our new Multi-Location Per Thread culling strategy (MLPT) and Thread-Efficient Warp-Allocation (TEWA) scheme for GPU to enable Jetson-SLAM achieving high accuracy and speed on embedded devices. (iii) Jetson-SLAM library achieves resource efficiency by having a data-sharing mechanism. Our experiments on three challenging datasets: KITTI, EuRoC, and KAIST-VIO, and two highly accurate SLAM backends: Full-BA and ICE-BA show that Jetson-SLAM is the fastest available accurate and GPU-accelerated SLAM system (Fig. 1).
This paper provides a set of cut-free complete sequent-style calculi for deontic STIT ('See To It That') logics used to formally reason about choice-making, obligations, and norms in a multi-agent setting. We leverage these calculi to write a proof-search algorithm deciding deontic, multi-agent STIT logics with (un)limited choice and introduce a loop-checking mechanism to ensure the termination of the algorithm. Despite the acknowledged potential for deontic reasoning in the context of autonomous, multi-agent scenarios, this work is the first to provide a syntactic decision procedure for this class of logics. Our proof-search procedure is designed to provide verifiable witnesses/certificates of the (in)validity of formulae, which permits an analysis of the (non)theoremhood of formulae and act as explanations thereof. We show how the proof system and decision algorithm can be used to automate normative reasoning tasks such as duty checking (viz. determining an agent's obligations relative to a given knowledge base), compliance checking (viz. determining if a choice, considered by an agent as potential conduct, complies with the given knowledge base), and joint fulfillment checking (viz. determining whether under a specified factual context an agent can jointly fulfill all their duties).
Prompt tuning for vision-language models such as CLIP involves optimizing the text prompts used to generate image-text pairs for specific downstream tasks. While hand-crafted or template-based prompts are generally applicable to a wider range of unseen classes, they tend to perform poorly in downstream tasks (i.e., seen classes). Learnable soft prompts, on the other hand, often perform well in downstream tasks but lack generalizability. Additionally, prior research has predominantly concentrated on the textual modality, with very few studies attempting to explore the prompt's generalization potential from the visual modality. Keeping these limitations in mind, we investigate how to prompt tuning to obtain both a competitive downstream performance and generalization. The study shows that by treating soft and hand-crafted prompts as dual views of the textual modality, and maximizing their mutual information, we can better ensemble task-specific and general semantic information. Moreover, to generate more expressive prompts, the study introduces a class-wise augmentation from the visual modality, resulting in significant robustness to a wider range of unseen classes. Extensive evaluations on several benchmarks report that the proposed approach achieves competitive results in terms of both task-specific performance and general abilities.
Vision-based Semantic Scene Completion (SSC) has gained much attention due to its widespread applications in various 3D perception tasks. Existing sparse-to-dense approaches typically employ shared context-independent queries across various input images, which fails to capture distinctions among them as the focal regions of different inputs vary and may result in undirected feature aggregation of cross-attention. Additionally, the absence of depth information may lead to points projected onto the image plane sharing the same 2D position or similar sampling points in the feature map, resulting in depth ambiguity. In this paper, we present a novel context and geometry aware voxel transformer. It utilizes a context aware query generator to initialize context-dependent queries tailored to individual input images, effectively capturing their unique characteristics and aggregating information within the region of interest. Furthermore, it extend deformable cross-attention from 2D to 3D pixel space, enabling the differentiation of points with similar image coordinates based on their depth coordinates. Building upon this module, we introduce a neural network named CGFormer to achieve semantic scene completion. Simultaneously, CGFormer leverages multiple 3D representations (i.e., voxel and TPV) to boost the semantic and geometric representation abilities of the transformed 3D volume from both local and global perspectives. Experimental results demonstrate that CGFormer achieves state-of-the-art performance on the SemanticKITTI and SSCBench-KITTI-360 benchmarks, attaining a mIoU of 16.87 and 20.05, as well as an IoU of 45.99 and 48.07, respectively. Remarkably, CGFormer even outperforms approaches employing temporal images as inputs or much larger image backbone networks.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.