Globally, the discourse of e-government has gathered momentum in public service delivery. No country has been left untouched in the implementation of e-government. Several government departments and agencies are now using information and communication technology (ICTs) to deliver government services and information to citizens, other government departments, and businesses. However, most of the government departments have not provided all of their services electronically or at least the most important ones. Thus, this creates a phenomenon of e-government service gaps. The objective of this study was to investigate the contextual factors enhancing e-government service gaps in a developing country. To achieve this aim, the TOE framework was employed together with a qualitative case study to guide data collection and analysis. The data was collected through semi-structured interviews from government employees who are involved in the implementation of e-government services in Zimbabwe as well as from citizens and businesses. Eleven (11) factors were identified and grouped under the TOE framework. This research contributes significantly to the implementation and utilisation of e-government services in Zimbabwe. The study also contributes to providing a strong theoretical understanding of the factors that enhance e-government service gaps explored in the research model.
Threat modeling and risk assessments are common ways to identify, estimate, and prioritize risk to national, organizational, and individual operations and assets. Several threat modeling and risk assessment approaches have been proposed prior to the advent of the Internet of Things (IoT) that focus on threats and risks in information technology (IT). Due to shortcomings in these approaches and the fact that there are significant differences between the IoT and IT, we synthesize and adapt these approaches to provide a threat modeling framework that focuses on threats and risks in the IoT. In doing so, we develop an IoT attack taxonomy that describes the adversarial assets, adversarial actions, exploitable vulnerabilities, and compromised properties that are components of any IoT attack. We use this IoT attack taxonomy as the foundation for designing a joint risk assessment and maturity assessment framework that is implemented as an interactive online tool. The assessment framework this tool encodes provides organizations with specific recommendations about where resources should be devoted to mitigate risk. The usefulness of this IoT framework is highlighted by case study implementations in the context of multiple industrial manufacturing companies, and the interactive implementation of this framework is available at //iotrisk.andrew.cmu.edu.
The widespread usage of social networks during mass convergence events, such as health emergencies and disease outbreaks, provides instant access to citizen-generated data that carry rich information about public opinions, sentiments, urgent needs, and situational reports. Such information can help authorities understand the emergent situation and react accordingly. Moreover, social media plays a vital role in tackling misinformation and disinformation. This work presents TBCOV, a large-scale Twitter dataset comprising more than two billion multilingual tweets related to the COVID-19 pandemic collected worldwide over a continuous period of more than one year. More importantly, several state-of-the-art deep learning models are used to enrich the data with important attributes, including sentiment labels, named-entities (e.g., mentions of persons, organizations, locations), user types, and gender information. Last but not least, a geotagging method is proposed to assign country, state, county, and city information to tweets, enabling a myriad of data analysis tasks to understand real-world issues. Our sentiment and trend analyses reveal interesting insights and confirm TBCOV's broad coverage of important topics.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Despite paying special attention to the motorcycle-involved crashes in the safety research, little is known about their pattern and impacts in developing countries. The widespread adoption of motorcycles in such regions in tandem with the vulnerability of motorcyclists exacerbates the likelihood of severe crashes. The main objective of this paper is to investigate the underlying factors contributing to the severity of motorcycle-involved crashes through employing crash data from March 2018 to March 2019 from Iran. Considering the ordinal nature of three injury classes of property-damage-only (PDO), injury, and fatal crashes in our data, an ordered logistic regression model is employed to address the problem. The data statistics suggest that motorcycle is responsible for 38% of injury and 15% of all fatal crashes in the dataset. The results indicate that significant factors contributing to more severe crashes include collision, road, temporal, and motorcycle rider characteristics. Among all attributes, our model is most sensitive to the motorcycle-pedestrian accident, which increases the probability of belonging a crash into injury and fatal crashes by 0.289 and 0.019, respectively. Moreover, we discovered a significant degree of correlation between young riders and riders without a license. Finally, upon the insights obtained from the results, we propose safety countermeasures, including 1) strict traffic rule enforcement upon riders and pedestrians, 2) educational programs, and 3) road-specific adjustment policies.
Evidence destruction and tempering is a time-tested tactic to protect the powerful perpetrators, criminals, and corrupt officials. Countries where law enforcing institutions and judicial system can be comprised, and evidence destroyed or tampered, ordinary citizens feel disengaged with the investigation or prosecution process, and in some instances, intimidated due to the vulnerability to exposure and retribution. Using Distributed Ledger Technologies (DLT), such as blockchain, as the underpinning technology, here we propose a conceptual model - 'EvidenceChain', through which citizens can anonymously upload digital evidence, having assurance that the integrity of the evidence will be preserved in an immutable and indestructible manner. Person uploading the evidence can anonymously share it with investigating authorities or openly with public, if coerced by the perpetrators or authorities. Transferring the ownership of evidence from authority to ordinary citizen, and custodianship of evidence from susceptible centralized repository to an immutable and indestructible distributed repository, can cause a paradigm shift of power that not only can minimize spoliation of evidence but human rights abuse too. Here the conceptual model was theoretically tested against some high-profile spoliation of evidence cases from four South Asian developing countries that often rank high in global corruption index and low in human rights index.
Anticipating the quantity of new associated or affirmed cases with novel coronavirus ailment 2019 (COVID-19) is critical in the counteraction and control of the COVID-19 flare-up. The new associated cases with COVID-19 information were gathered from 20 January 2020 to 21 July 2020. We filtered out the countries which are converging and used those for training the network. We utilized the SARIMAX, Linear regression model to anticipate new suspected COVID-19 cases for the countries which did not converge yet. We predict the curve of non-converged countries with the help of proposed Statistical SARIMAX model (SSM). We present new information investigation-based forecast results that can assist governments with planning their future activities and help clinical administrations to be more ready for what's to come. Our framework can foresee peak corona cases with an R-Squared value of 0.986 utilizing linear regression and fall of this pandemic at various levels for countries like India, US, and Brazil. We found that considering more countries for training degrades the prediction process as constraints vary from nation to nation. Thus, we expect that the outcomes referenced in this work will help individuals to better understand the possibilities of this pandemic.
The tourism industry is increasingly influenced by the evolution of information and communication technologies (ICT), which are revolutionizing the way people travel. In this work we want to nvestigate the use of innovative IT technologies by DMOs (Destination Management Organizations), focusing on blockchain technology, both from the point of view of research in the field, and in the study of the most relevant software projects. In particular, we intend to verify the benefits offered by these IT tools in the management and monitoring of a destination, without forgetting the implications for the other stakeholders involved. These technologies, in fact, can offer a wide range of services that can be useful throughout the life cycle of the destination.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
The wide spread use of online recruitment services has led to information explosion in the job market. As a result, the recruiters have to seek the intelligent ways for Person Job Fit, which is the bridge for adapting the right job seekers to the right positions. Existing studies on Person Job Fit have a focus on measuring the matching degree between the talent qualification and the job requirements mainly based on the manual inspection of human resource experts despite of the subjective, incomplete, and inefficient nature of the human judgement. To this end, in this paper, we propose a novel end to end Ability aware Person Job Fit Neural Network model, which has a goal of reducing the dependence on manual labour and can provide better interpretation about the fitting results. The key idea is to exploit the rich information available at abundant historical job application data. Specifically, we propose a word level semantic representation for both job requirements and job seekers' experiences based on Recurrent Neural Network. Along this line, four hierarchical ability aware attention strategies are designed to measure the different importance of job requirements for semantic representation, as well as measuring the different contribution of each job experience to a specific ability requirement. Finally, extensive experiments on a large scale real world data set clearly validate the effectiveness and interpretability of the APJFNN framework compared with several baselines.
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.