亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we explore an integrated sensing and communication (ISAC) system with backscattering RFID tags. In this setup, an access point employs a communication beam to serve a user while leveraging a sensing beam to detect an RFID tag. Under the total transmit power constraint of the system, our objective is to design sensing and communication beams by considering the tag detection and communication requirements. First, we adopt zero-forcing to design the beamforming vectors, followed by solving a convex optimization problem to determine the power allocation between sensing and communication. Then, we study a joint beamforming design problem with the goal of minimizing the total transmit power while satisfying the tag detection and communication requirements. To resolve this, we re-formulate the non-convex constraints into convex second-order cone constraints. The simulation results demonstrate that, under different communication SINR requirements, joint beamforming optimization outperforms the zero-forcing-based method in terms of achievable detection distance, offering a promising approach for the ISAC-backscattering systems.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

Mitigating social biases typically requires identifying the social groups associated with each data sample. In this paper, we present DAFair, a novel approach to address social bias in language models. Unlike traditional methods that rely on explicit demographic labels, our approach does not require any such information. Instead, we leverage predefined prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias in the model's representations. Our empirical results across two tasks and two models demonstrate the effectiveness of our method compared to previous approaches that do not rely on labeled data. Moreover, with limited demographic-annotated data, our approach outperforms common debiasing approaches.

This paper introduces 3DFIRES, a novel system for scene-level 3D reconstruction from posed images. Designed to work with as few as one view, 3DFIRES reconstructs the complete geometry of unseen scenes, including hidden surfaces. With multiple view inputs, our method produces full reconstruction within all camera frustums. A key feature of our approach is the fusion of multi-view information at the feature level, enabling the production of coherent and comprehensive 3D reconstruction. We train our system on non-watertight scans from large-scale real scene dataset. We show it matches the efficacy of single-view reconstruction methods with only one input and surpasses existing techniques in both quantitative and qualitative measures for sparse-view 3D reconstruction.

Low Orbit Satellite (LEO) networks such as Starlink promise Internet access everywhere around the world. In this paper, we present WetLinks - a large and publicly available trace-based dataset of Starlink measurements. The measurements were concurrently collected from two European vantage points over a span of six months. Consisting of approximately 140,000 measurements, the dataset comprises all relevant network parameters such as the upload and download throughputs, the RTT, packet loss, and traceroutes. We further augment the dataset with concurrent data from professional weather stations placed next to both Starlink terminals. Based on our dataset, we analyse Starlink performance, including its susceptibility to weather conditions. We use this to validate our dataset by replicating the results of earlier smaller-scale studies. We release our datasets and all accompanying tooling as open data. To the best of our knowledge, ours is the largest Starlink dataset to date.

Category imbalance is one of the most popular and important issues in the domain of classification. In this paper, we present a new generalized framework with Adaptive Weight function for soft-margin Weighted SVM (AW-WSVM), which aims to enhance the issue of imbalance and outlier sensitivity in standard support vector machine (SVM) for classifying two-class data. The weight coefficient is introduced into the unconstrained soft-margin support vector machines, and the sample weights are updated before each training. The Adaptive Weight function (AW function) is constructed from the distance between the samples and the decision hyperplane, assigning different weights to each sample. A weight update method is proposed, taking into account the proximity of the support vectors to the decision hyperplane. Before training, the weights of the corresponding samples are initialized according to different categories. Subsequently, the samples close to the decision hyperplane are identified and assigned more weights. At the same time, lower weights are assigned to samples that are far from the decision hyperplane. Furthermore, we also put forward an effective way to eliminate noise. To evaluate the strength of the proposed generalized framework, we conducted experiments on standard datasets and emotion classification datasets with different imbalanced ratios (IR). The experimental results prove that the proposed generalized framework outperforms in terms of accuracy, recall metrics and G-mean, validating the effectiveness of the weighted strategy provided in this paper in enhancing support vector machines.

In this paper, we introduce a new flow-based method for global optimization of Lipschitz functions, called Stein Boltzmann Sampling (SBS). Our method samples from the Boltzmann distribution that becomes asymptotically uniform over the set of the minimizers of the function to be optimized. Candidate solutions are sampled via the \emph{Stein Variational Gradient Descent} algorithm. We prove the asymptotic convergence of our method, introduce two SBS variants, and provide a detailed comparison with several state-of-the-art global optimization algorithms on various benchmark functions. The design of our method, the theoretical results, and our experiments, suggest that SBS is particularly well-suited to be used as a continuation of efficient global optimization methods as it can produce better solutions while making a good use of the budget.

Communicating design implications is common within the HCI community when publishing academic papers, yet these papers are rarely read and used by designers. One solution is to use design cards as a form of translational resource that communicates valuable insights from papers in a more digestible and accessible format to assist in design processes. However, creating design cards can be time-consuming, and authors may lack the resources/know-how to produce cards. Through an iterative design process, we built a system that helps create design cards from academic papers using an LLM and text-to-image model. Our evaluation with designers (N=21) and authors of selected papers (N=12) revealed that designers perceived the design implications from our design cards as more inspiring and generative, compared to reading original paper texts, and the authors viewed our system as an effective way of communicating their design implications. We also propose future enhancements for AI-generated design cards.

In this paper, we present Mondrian, an edge system that enables high-performance object detection on high-resolution video streams. Many lightweight models and system optimization techniques have been proposed for resource-constrained devices, but they do not fully utilize the potential of the accelerators over dynamic, high-resolution videos. To enable such capability, we devise a novel Compressive Packed Inference to minimize per-pixel processing costs by selectively determining the necessary pixels to process and combining them to maximize processing parallelism. In particular, our system quickly extracts ROIs and dynamically shrinks them, reflecting the effect of the fast-changing characteristics of objects and scenes. It then intelligently combines such scaled ROIs into large canvases to maximize the utilization of inference accelerators such as GPU. Evaluation across various datasets, models, and devices shows Mondrian outperforms state-of-the-art baselines (e.g., input rescaling, ROI extractions, ROI extractions+batching) by 15.0-19.7% higher accuracy, leading to $\times$6.65 higher throughput than frame-wise inference for processing various 1080p video streams. We will release the code after the paper review.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

北京阿比特科技有限公司