In this paper, we present Mondrian, an edge system that enables high-performance object detection on high-resolution video streams. Many lightweight models and system optimization techniques have been proposed for resource-constrained devices, but they do not fully utilize the potential of the accelerators over dynamic, high-resolution videos. To enable such capability, we devise a novel Compressive Packed Inference to minimize per-pixel processing costs by selectively determining the necessary pixels to process and combining them to maximize processing parallelism. In particular, our system quickly extracts ROIs and dynamically shrinks them, reflecting the effect of the fast-changing characteristics of objects and scenes. It then intelligently combines such scaled ROIs into large canvases to maximize the utilization of inference accelerators such as GPU. Evaluation across various datasets, models, and devices shows Mondrian outperforms state-of-the-art baselines (e.g., input rescaling, ROI extractions, ROI extractions+batching) by 15.0-19.7% higher accuracy, leading to $\times$6.65 higher throughput than frame-wise inference for processing various 1080p video streams. We will release the code after the paper review.
In this paper, we present a novel technique to search for hardware architectures of accelerators optimized for end-to-end training of deep neural networks (DNNs). Our approach addresses both single-device and distributed pipeline and tensor model parallel scenarios, latter being addressed for the first time. The search optimized accelerators for training relevant metrics such as throughput/TDP under a fixed area and power constraints. However, with the proliferation of specialized architectures and complex distributed training mechanisms, the design space exploration of hardware accelerators is very large. Prior work in this space has tried to tackle this by reducing the search space to either a single accelerator execution that too only for inference, or tuning the architecture for specific layers (e.g., convolution). Instead, we take a unique heuristic-based critical path-based approach to determine the best use of available resources (power and area) either for a set of DNN workloads or each workload individually. First, we perform local search to determine the architecture for each pipeline and tensor model stage. Specifically, the system iteratively generates architectural configurations and tunes the design using a novel heuristic-based approach that prioritizes accelerator resources and scheduling to critical operators in a machine learning workload. Second, to address the complexities of distributed training, the local search selects multiple (k) designs per stage. A global search then identifies an accelerator from the top-k sets to optimize training throughput across the stages. We evaluate this work on 11 different DNN models. Compared to a recent inference-only work Spotlight, our method converges to a design in, on average, 31x less time and offers 12x higher throughput. Moreover, designs generated using our method achieve 12% throughput improvement over TPU architecture.
In this paper, we present Paramanu-Ganita, a 208 million parameter novel Auto Regressive (AR) decoder based language model on mathematics. The model is pretrained from scratch at context size of 4096 on our curated mixed mathematical corpus. We evaluate our model on both perplexity metric and GSM8k mathematical benchmark. Paramanu-Ganita despite being 35 times smaller than 7B LLMs, outperformed generalist LLMs such as LLaMa-1 7B by 28.4% points, LLaMa-2 7B by 27.6% points, Falcon 7B by 32.6% points, PaLM 8B by 35.3% points, and math specialised LLMs such as Minerva 8B by 23.2% points, and LLEMMA-7B by 3.0% points in GSM8k test accuracy metric respectively. Paramanu-Ganita also outperformed giant LLMs like PaLM 62B by 6.4% points, Falcon 40B by 19.8% points, LLaMa-1 33B by 3.8% points and Vicuna 13B by 11.8% points respectively. The large significant margin improvement in performance of our math model over the existing LLMs signifies that reasoning capabilities of language model are just not restricted to LLMs with humongous number of parameters. Paramanu-Ganita took 146 hours of A100 training whereas math specialised LLM, LLEMMA 7B, was trained for 23,000 A100 hours of training equivalent. Thus, our approach of pretraining powerful domain specialised language models from scratch for domain adaptation is much more cost-effective than performing continual training of LLMs for domain adaptation. Hence, we conclude that for strong mathematical reasoning abilities of language model, we do not need giant LLMs and immense computing power to our end. In the end, we want to point out that we have only trained Paramanu-Ganita only on a part of our entire mathematical corpus and yet to explore the full potential of our model.
In this paper, we introduce X-Ray, an innovative approach to 3D generation that employs a new sequential representation, drawing inspiration from the depth-revealing capabilities of X-Ray scans to meticulously capture both the external and internal features of objects. Central to our method is the utilization of ray casting techniques originating from the camera's viewpoint, meticulously recording the geometric and textural details encountered across all intersected surfaces. This process efficiently condenses complete objects or scenes into a multi-frame format, just like videos. Such a structure ensures the 3D representation is composed solely of critical surface information. Highlighting the practicality and adaptability of our X-Ray representation, we showcase its utility in synthesizing 3D objects, employing a network architecture akin to that used in video diffusion models. The outcomes reveal our representation's superior performance in enhancing both the accuracy and efficiency of 3D synthesis, heralding new directions for ongoing research and practical implementations in the field.
In this paper, we introduce "Marking", a novel grading task that enhances automated grading systems by performing an in-depth analysis of student responses and providing students with visual highlights. Unlike traditional systems that provide binary scores, "marking" identifies and categorizes segments of the student response as correct, incorrect, or irrelevant and detects omissions from gold answers. We introduce a new dataset meticulously curated by Subject Matter Experts specifically for this task. We frame "Marking" as an extension of the Natural Language Inference (NLI) task, which is extensively explored in the field of Natural Language Processing. The gold answer and the student response play the roles of premise and hypothesis in NLI, respectively. We subsequently train language models to identify entailment, contradiction, and neutrality from student response, akin to NLI, and with the added dimension of identifying omissions from gold answers. Our experimental setup involves the use of transformer models, specifically BERT and RoBERTa, and an intelligent training step using the e-SNLI dataset. We present extensive baseline results highlighting the complexity of the "Marking" task, which sets a clear trajectory for the upcoming study. Our work not only opens up new avenues for research in AI-powered educational assessment tools, but also provides a valuable benchmark for the AI in education community to engage with and improve upon in the future. The code and dataset can be found at //github.com/luffycodes/marking.
In this paper, we introduce HamilToniQ, an open-source, and application-oriented benchmarking toolkit for the comprehensive evaluation of Quantum Processing Units (QPUs). Designed to navigate the complexities of quantum computations, HamilToniQ incorporates a methodological framework assessing QPU types, topologies, and multi-QPU systems. The toolkit facilitates the evaluation of QPUs' performance through multiple steps including quantum circuit compilation and quantum error mitigation (QEM), integrating strategies that are unique to each stage. HamilToniQ's standardized score, H-Score, quantifies the fidelity and reliability of QPUs, providing a multidimensional perspective of QPU performance. With a focus on the Quantum Approximate Optimization Algorithm (QAOA), the toolkit enables direct, comparable analysis of QPUs, enhancing transparency and equity in benchmarking. Demonstrated in this paper, HamilToniQ has been validated on various IBM QPUs, affirming its effectiveness and robustness. Overall, HamilToniQ significantly contributes to the advancement of the quantum computing field by offering precise and equitable benchmarking metrics.
In this paper, we investigate the retrieval-augmented generation (RAG) based on Knowledge Graphs (KGs) to improve the accuracy and reliability of Large Language Models (LLMs). Recent approaches suffer from insufficient and repetitive knowledge retrieval, tedious and time-consuming query parsing, and monotonous knowledge utilization. To this end, we develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework, which leverages LLMs' powerful reasoning capacity to compensate for the incompleteness of user queries, optimizes the interaction process with LLMs, and provides diverse retrieved knowledge. Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs, as well as the carefully curated prompt to enhance the density and efficiency of LLMs' responses. Furthermore, we introduce the HO Fragment Granularity-aware Rerank Module to filter out noise while ensuring the balance between diversity and relevance in retrieved knowledge. Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability.
We propose MeshLRM, a novel LRM-based approach that can reconstruct a high-quality mesh from merely four input images in less than one second. Different from previous large reconstruction models (LRMs) that focus on NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction and rendering within the LRM framework. This allows for end-to-end mesh reconstruction by fine-tuning a pre-trained NeRF LRM with mesh rendering. Moreover, we improve the LRM architecture by simplifying several complex designs in previous LRMs. MeshLRM's NeRF initialization is sequentially trained with low- and high-resolution images; this new LRM training strategy enables significantly faster convergence and thereby leads to better quality with less compute. Our approach achieves state-of-the-art mesh reconstruction from sparse-view inputs and also allows for many downstream applications, including text-to-3D and single-image-to-3D generation. Project page: //sarahweiii.github.io/meshlrm/
Text-video retrieval aims to find the most relevant cross-modal samples for a given query. Recent methods focus on modeling the whole spatial-temporal relations. However, since video clips contain more diverse content than captions, the model aligning these asymmetric video-text pairs has a high risk of retrieving many false positive results. In this paper, we propose Probabilistic Token Aggregation (\textit{ProTA}) to handle cross-modal interaction with content asymmetry. Specifically, we propose dual partial-related aggregation to disentangle and re-aggregate token representations in both low-dimension and high-dimension spaces. We propose token-based probabilistic alignment to generate token-level probabilistic representation and maintain the feature representation diversity. In addition, an adaptive contrastive loss is proposed to learn compact cross-modal distribution space. Based on extensive experiments, \textit{ProTA} achieves significant improvements on MSR-VTT (50.9%), LSMDC (25.8%), and DiDeMo (47.2%).
Mobile device agent based on Multimodal Large Language Models (MLLM) is becoming a popular application. In this paper, we introduce Mobile-Agent, an autonomous multi-modal mobile device agent. Mobile-Agent first leverages visual perception tools to accurately identify and locate both the visual and textual elements within the app's front-end interface. Based on the perceived vision context, it then autonomously plans and decomposes the complex operation task, and navigates the mobile Apps through operations step by step. Different from previous solutions that rely on XML files of Apps or mobile system metadata, Mobile-Agent allows for greater adaptability across diverse mobile operating environments in a vision-centric way, thereby eliminating the necessity for system-specific customizations. To assess the performance of Mobile-Agent, we introduced Mobile-Eval, a benchmark for evaluating mobile device operations. Based on Mobile-Eval, we conducted a comprehensive evaluation of Mobile-Agent. The experimental results indicate that Mobile-Agent achieved remarkable accuracy and completion rates. Even with challenging instructions, such as multi-app operations, Mobile-Agent can still complete the requirements. Code and model will be open-sourced at //github.com/X-PLUG/MobileAgent.
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.