亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most often, virtual acoustic rendering employs real-time updated room acoustic simulations to accomplish auralization for a variable listener perspective. As an alternative, we propose and test a technique to interpolate room impulse responses, specifically Ambisonic room impulse responses (ARIRs) available at a grid of spatially distributed receiver perspectives, measured or simulated in a desired acoustic environment. In particular, we extrapolate a triplet of neighboring ARIRs to the variable listener perspective, preceding their linear interpolation. The extrapolation is achieved by decomposing each ARIR into localized sound events and re-assigning their direction, time, and level to what could be observed at the listener perspective, with as much temporal, directional, and perspective context as possible. We propose to undertake this decomposition in two levels: Peaks in the early ARIRs are decomposed into jointly localized sound events, based on time differences of arrival observed in either an ARIR triplet, or all ARIRs observing the direct sound. Sound events that could not be jointly localized are treated as residuals whose less precise localization utilizes direction-of-arrival detection and the estimated time of arrival. For the interpolated rendering, suitable parameter settings are found by evaluating the proposed method in a listening experiment, using both measured and simulated ARIR data sets, under static and time-varying conditions.

相關內容

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.

Speech super-resolution (SR) is the task that restores high-resolution speech from low-resolution input. Existing models employ simulated data and constrained experimental settings, which limit generalization to real-world SR. Predictive models are known to perform well in fixed experimental settings, but can introduce artifacts in adverse conditions. On the other hand, generative models learn the distribution of target data and have a better capacity to perform well on unseen conditions. In this study, we propose a novel two-stage approach that combines the strengths of predictive and generative models. Specifically, we employ a diffusion-based model that is conditioned on the output of a predictive model. Our experiments demonstrate that the model significantly outperforms single-stage counterparts and existing strong baselines on benchmark SR datasets. Furthermore, we introduce a repainting technique during the inference of the diffusion process, enabling the proposed model to regenerate high-frequency components even in mismatched conditions. An additional contribution is the collection of and evaluation on real SR recordings, using the same microphone at different native sampling rates. We make this dataset freely accessible, to accelerate progress towards real-world speech super-resolution.

We develop a novel multiple hypothesis testing correction with family-wise error rate (FWER) control that efficiently exploits positive dependencies between potentially correlated statistical hypothesis tests. Our proposed algorithm $\texttt{max-rank}$ is conceptually straight-forward, relying on the use of a $\max$-operator in the rank domain of computed test statistics. We compare our approach to the frequently employed Bonferroni correction, theoretically and empirically demonstrating its superiority over Bonferroni in the case of existing positive dependency, and its equivalence otherwise. Our advantage over Bonferroni increases as the number of tests rises, and we maintain high statistical power whilst ensuring FWER control. We specifically frame our algorithm in the context of parallel permutation testing, a scenario that arises in our primary application of conformal prediction, a recently popularized approach for quantifying uncertainty in complex predictive settings.

We introduce MCCE: Monte Carlo sampling of valid and realistic Counterfactual Explanations for tabular data, a novel counterfactual explanation method that generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features given the immutable features and the decision. Unlike other on-manifold methods that tend to rely on variational autoencoders and have strict prediction model and data requirements, MCCE handles any type of prediction model and categorical features with more than two levels. MCCE first models the joint distribution of the features and the decision with an autoregressive generative model where the conditionals are estimated using decision trees. Then, it samples a large set of observations from this model, and finally, it removes the samples that do not obey certain criteria. We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets and show that MCCE outperforms these methods on all common performance metrics and speed. In particular, including the decision in the modeling process improves the efficiency of the method substantially.

Obtaining high-resolution, accurate channel topography and deposit conditions is the prior challenge for the study of channelized debris flow. Currently, wide-used mapping technologies including satellite imaging and drone photogrammetry struggle to precisely observe channel interior conditions of mountainous long-deep gullies, particularly those in the Wenchuan Earthquake region. SLAM is an emerging tech for 3D mapping; however, extremely rugged environment in long-deep gullies poses two major challenges even for the state-of-art SLAM: (1) Atypical features; (2) Violent swaying and oscillation of sensors. These issues result in large deviation and lots of noise for SLAM results. To improve SLAM mapping in such environments, we propose an advanced SLAM-based channel detection and mapping system, namely AscDAMs. It features three main enhancements to post-process SLAM results: (1) The digital orthophoto map aided deviation correction algorithm greatly eliminates the systematic error; (2) The point cloud smoothing algorithm substantially diminishes noises; (3) The cross section extraction algorithm enables the quantitative assessment of channel deposits and their changes. Two field experiments were conducted in Chutou Gully, Wenchuan County in China in February and November 2023, representing observations before and after the rainy season. We demonstrate the capability of AscDAMs to greatly improve SLAM results, promoting SLAM for mapping the specially challenging environment. The proposed method compensates for the insufficiencies of existing technologies in detecting debris flow channel interiors including detailed channel morphology, erosion patterns, deposit distinction, volume estimation and change detection. It serves to enhance the study of full-scale debris flow mechanisms, long-term post-seismic evolution, and hazard assessment.

Speech foundation models (SFMs) have been benchmarked on many speech processing tasks, often achieving state-of-the-art performance with minimal adaptation. However, the SFM paradigm has been significantly less explored for applications of interest to the speech perception community. In this paper we present a systematic evaluation of 10 SFMs on one such application: Speech intelligibility prediction. We focus on the non-intrusive setup of the Clarity Prediction Challenge 2 (CPC2), where the task is to predict the percentage of words correctly perceived by hearing-impaired listeners from speech-in-noise recordings. We propose a simple method that learns a lightweight specialized prediction head on top of frozen SFMs to approach the problem. Our results reveal statistically significant differences in performance across SFMs. Our method resulted in the winning submission in the CPC2, demonstrating its promise for speech perception applications.

Generative models offer a direct way of modeling complex data. Energy-based models attempt to encode the statistical correlations observed in the data at the level of the Boltzmann weight associated with an energy function in the form of a neural network. We address here the challenge of understanding the physical interpretation of such models. In this study, we propose a simple solution by implementing a direct mapping between the Restricted Boltzmann Machine and an effective Ising spin Hamiltonian. This mapping includes interactions of all possible orders, going beyond the conventional pairwise interactions typically considered in the inverse Ising (or Boltzmann Machine) approach, and allowing the description of complex datasets. Earlier works attempted to achieve this goal, but the proposed mappings were inaccurate for inference applications, did not properly treat the complexity of the problem, or did not provide precise prescriptions for practical application. To validate our method, we performed several controlled inverse numerical experiments in which we trained the RBMs using equilibrium samples of predefined models with local external fields, 2-body and 3-body interactions in different sparse topologies. The results demonstrate the effectiveness of our proposed approach in learning the correct interaction network and pave the way for its application in modeling interesting binary variable datasets. We also evaluate the quality of the inferred model based on different training methods.

Depth perception in volumetric visualization plays a crucial role in the understanding and interpretation of volumetric data. Numerous visualization techniques, many of which rely on physically based optical effects, promise to improve depth perception but often do so without considering camera movement or the content of the volume. As a result, the findings from previous studies may not be directly applicable to crowded volumes, where a large number of contained structures disrupts spatial perception. Crowded volumes therefore require special analysis and visualization tools with sparsification capabilities. Interactivity is an integral part of visualizing and exploring crowded spaces, but has received little attention in previous studies. To address this gap, we conducted a study to assess the impact of different rendering techniques on depth perception in crowded volumes, with a particular focus on the effects of camera movement. The results show that depth perception considering camera motion depends much more on the content of the volume than on the chosen visualization technique. Furthermore, we found that traditional rendering techniques, which have often performed poorly in previous studies, showed comparable performance to physically based methods in our study.

Bayesian sampling is an important task in statistics and machine learning. Over the past decade, many ensemble-type sampling methods have been proposed. In contrast to the classical Markov chain Monte Carlo methods, these new methods deploy a large number of interactive samples, and the communication between these samples is crucial in speeding up the convergence. To justify the validity of these sampling strategies, the concept of interacting particles naturally calls for the mean-field theory. The theory establishes a correspondence between particle interactions encoded in a set of coupled ODEs/SDEs and a PDE that characterizes the evolution of the underlying distribution. This bridges numerical algorithms with the PDE theory used to show convergence in time. Many mathematical machineries are developed to provide the mean-field analysis, and we showcase two such examples: The coupling method and the compactness argument built upon the martingale strategy. The former has been deployed to show the convergence of ensemble Kalman sampler and ensemble Kalman inversion, and the latter will be shown to be immensely powerful in proving the validity of the Vlasov-Boltzmann simulator.

北京阿比特科技有限公司