亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

International public health policies increasingly favor mandatory immunization. If its short-term effects on vaccine coverage are well documented, there has been little consideration to its effects on public attitudes towards vaccines. In this paper, we examine Google searches related to vaccines in five countries (Australia, France, Germany, Italy, Serbia) and two American states (California) which experienced at least one vaccine mandate extension in the past decade. We found that the effects of a new mandate implementation heavily depends on the context in each specific country or state. We also observed that there is little indication that the passing of new or extended mandates attenuated public doubt towards vaccines.

相關內容

 谷歌公司(Google Inc.)成立于1998年9月4日,由拉里·佩奇和謝爾蓋·布林共同創建,被公認為全球最大的搜索引擎。

In recent years, with the rapid growth of Internet data, the number and types of scientific and technological resources are also rapidly expanding. However, the increase in the number and category of information data will also increase the cost of information acquisition. For technology-based enterprises or users, in addition to general papers, patents, etc., policies related to technology or the development of their industries should also belong to a type of scientific and technological resources. The cost and difficulty of acquiring users. Extracting valuable science and technology policy resources from a huge amount of data with mixed contents and providing accurate and fast retrieval will help to break down information barriers and reduce the cost of information acquisition, which has profound social significance and social utility. This article focuses on the difficulties and problems in the field of science and technology policy, and introduces related technologies and developments.

Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.

The COVID-19 pandemic is accompanied by a massive "infodemic" that makes it hard to identify concise and credible information for COVID-19-related questions, like incubation time, infection rates, or the effectiveness of vaccines. As a novel solution, our paper is concerned with designing a question-answering system based on modern technologies from natural language processing to overcome information overload and misinformation in pandemic situations. To carry out our research, we followed a design science research approach and applied Ingwersen's cognitive model of information retrieval interaction to inform our design process from a socio-technical lens. On this basis, we derived prescriptive design knowledge in terms of design requirements and design principles, which we translated into the construction of a prototypical instantiation. Our implementation is based on the comprehensive CORD-19 dataset, and we demonstrate our artifact's usefulness by evaluating its answer quality based on a sample of COVID-19 questions labeled by biomedical experts.

The Coronavirus disease 2019 (COVID-19) outbreak quickly spread around the world, resulting in over 240 million infections and 4 million deaths by Oct 2021. While the virus is spreading from person to person silently, fear has also been spreading around the globe. The COVID-19 information from the Australian Government is convincing but not timely or detailed, and there is much information on social networks with both facts and rumors. As software engineers, we have spontaneously and rapidly constructed a COVID-19 information dashboard aggregating reliable information semi-automatically checked from different sources for providing one-stop information sharing site about the latest status in Australia. Inspired by the John Hopkins University COVID-19 Map, our dashboard contains the case statistics, case distribution, government policy, latest news, with interactive visualization. In this paper, we present a participant's in-person observations in which the authors acted as founders of //covid-19-au.com/ serving more than 830K users with 14M page views since March 2020. According to our first-hand experience, we summarize 9 lessons for developers, researchers and instructors. These lessons may inspire the development, research and teaching in software engineer aspects for coping with similar public crises in the future.

With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.

Blended learning (BL) is a recent tread among many options that can best fit learners' needs, regardless of time and place. This study aimed to discover students' perceptions of BL and the challenges faced by them while using technology. This quantitative study used data gathered from 300 students enrolled in four public universities in the Sindh province of Pakistan. the finding shows that students were compatible with the use of technology, and it has a positive effect on their academic experience. The study also showed that the use of technology encourages peer collaboration. The challenges found include: neither teacher support nor a training program was provided to the students for the course which needed to shift from a traditional face to face paradigm to a blended format, a lake of space lies with skills in a laboratory assistants for the courses with a blended format and as shortage of high tech computer laboratories / computer units to run these courses. Therefore, it is recommended that the authorities must develop and incorporate a comprehensive mechanism for the effective implementation of BL in the learning teaching-learning process heads of the departments should also provide additional computing infrastructure to their departments.

Objective: The effect of camera viewpoint was studied when performing visually obstructed psychomotor targeting tasks. Background: Previous research in laparoscopy and robotic teleoperation found that complex perceptual-motor adaptations associated with misaligned viewpoints corresponded to degraded performance in manipulation. Because optimal camera positioning is often unavailable in restricted environments, alternative viewpoints that might mitigate performance effects are not obvious. Methods: A virtual keyboard-controlled targeting task was remotely distributed to workers of Amazon Mechanical Turk. The experiment was performed by 192 subjects for a static viewpoint with independent parameters of target direction, Fitts' law index of difficulty, viewpoint azimuthal angle (AA), and viewpoint polar angle (PA). A dynamic viewpoint experiment was also performed by 112 subjects in which the viewpoint AA changed after every trial. Results: AA and target direction had significant effects on performance for the static viewpoint experiment. Movement time and travel distance increased while AA increased until there was a discrete improvement in performance for 180{\deg}. Increasing AA from 225{\deg} to 315{\deg} linearly decreased movement time and distance. There were significant main effects of current AA and magnitude of transition for the dynamic viewpoint experiment. Orthogonal direction and no-change viewpoint transitions least affected performance. Conclusions: Viewpoint selection should aim to minimize associated rotations within the manipulation plane when performing targeting tasks whether implementing a static or dynamic viewing solution. Because PA rotations had negligible performance effects, PA adjustments may extend the space of viable viewpoints. Applications: These results can inform viewpoint-selection for visual feedback during psychomotor tasks.

Federated learning with differential privacy, or private federated learning, provides a strategy to train machine learning models while respecting users' privacy. However, differential privacy can disproportionately degrade the performance of the models on under-represented groups, as these parts of the distribution are difficult to learn in the presence of noise. Existing approaches for enforcing fairness in machine learning models have considered the centralized setting, in which the algorithm has access to the users' data. This paper introduces an algorithm to enforce group fairness in private federated learning, where users' data does not leave their devices. First, the paper extends the modified method of differential multipliers to empirical risk minimization with fairness constraints, thus providing an algorithm to enforce fairness in the central setting. Then, this algorithm is extended to the private federated learning setting. The proposed algorithm, \texttt{FPFL}, is tested on a federated version of the Adult dataset and an "unfair" version of the FEMNIST dataset. The experiments on these datasets show how private federated learning accentuates unfairness in the trained models, and how FPFL is able to mitigate such unfairness.

Mechanism design is a central research branch in microeconomics. An effective mechanism can significantly improve performance and efficiency of social decisions under desired objectives, such as to maximize social welfare or to maximize revenue for agents. However, mechanism design is challenging for many common models including the public project problem model which we study in this thesis. A typical public project problem is a group of agents crowdfunding a public project (e.g., building a bridge). The mechanism will decide the payment and allocation for each agent (e.g., how much the agent pays, and whether the agent can use it) according to their valuations. The mechanism can be applied to various economic scenarios, including those related to cyber security. There are different constraints and optimized objectives for different public project scenarios (sub-problems), making it unrealistic to design a universal mechanism that fits all scenarios, and designing mechanisms for different settings manually is a taxing job. Therefore, we explore automated mechanism design (AMD) of public project problems under different constraints. In this thesis, we focus on the public project problem, which includes many sub-problems (excludable/non-excludable, divisible/indivisible, binary/non-binary). We study the classical public project model and extend this model to other related areas such as the zero-day exploit markets. For different sub-problems of the public project problem, we adopt different novel machine learning techniques to design optimal or near-optimal mechanisms via automated mechanism design. We evaluate our mechanisms by theoretical analysis or experimentally comparing our mechanisms against existing mechanisms. The experiments and theoretical results show that our mechanisms are better than state-of-the-art automated or manual mechanisms.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司