亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ridesharing has become a promising travel mode recently due to the economic and social benefits. As an essential operator, "insertion operator" has been extensively studied over static road networks. When a new request appears, the insertion operator is used to find the optimal positions of a worker's current route to insert the origin and destination of this request and minimize the travel time of this worker. Previous works study how to conduct the insertion operation efficiently in static road networks, however, in reality, the route planning should be addressed by considering the dynamic traffic scenario (i.e., a time-dependent road network). Unfortunately, existing solutions to the insertion operator become in efficient under this setting. Thus, this paper studies the insertion operator over time-dependent road networks. Specially, to reduce the high time complexity $O(n^3)$ of existing solution, we calculate the compound travel time functions along the route to speed up the calculation of the travel time between vertex pairs belonging to the route, as a result time complexity of an insertion can be reduced to $O(n^2)$. Finally, we further improve the method to a linear-time insertion algorithm by showing that it only needs $O(1)$ time to find the best position of current route to insert the origin when linearly enumerating each possible position for the new request's destination. Evaluations on two real-world and large-scale datasets show that our methods can accelerate the existing insertion algorithm by up to 25 times.

相關內容

In this article, we study the semi discrete and fully discrete formulations for a Kirchhoff type quasilinear integro-differential equation involving time-fractional derivative of order $\alpha \in (0,1) $. For the semi discrete formulation of the equation under consideration, we discretize the space domain using a conforming FEM and keep the time variable continuous. We modify the standard Ritz-Volterra projection operator to carry out error analysis for the semi discrete formulation of the considered equation. In general, solutions of the time-fractional partial differential equations (PDEs) have a weak singularity near time $t=0$. Taking this singularity into account, we develop a new linearized fully discrete numerical scheme for the considered equation on a graded mesh in time. We derive a priori bounds on the solution of this fully discrete numerical scheme using a new weighted $H^{1}(\Omega)$ norm. We prove that the developed numerical scheme has an accuracy rate of $O(P^{-1}+N^{-(2-\alpha)})$ in $L^{\infty}(0,T;L^{2}(\Omega))$ as well as in $L^{\infty}(0,T;H^{1}_{0}(\Omega))$, where $P$ and $N$ are degrees of freedom in the space and time directions respectively. The robustness and efficiency of the proposed numerical scheme are demonstrated by some numerical examples.

Ordinary and partial differential equations (DE) are used extensively in scientific and mathematical domains to model physical systems. Current literature has focused primarily on deep neural network (DNN) based methods for solving a specific DE or a family of DEs. Research communities with a history of using DE models may view DNN-based differential equation solvers (DNN-DEs) as a faster and transferable alternative to current numerical methods. However, there is a lack of systematic surveys detailing the use of DNN-DE methods across physical application domains and a generalized taxonomy to guide future research. This paper surveys and classifies previous works and provides an educational tutorial for senior practitioners, professionals, and graduate students in engineering and computer science. First, we propose a taxonomy to navigate domains of DE systems studied under the umbrella of DNN-DE. Second, we examine the theory and performance of the Physics Informed Neural Network (PINN) to demonstrate how the influential DNN-DE architecture mathematically solves a system of equations. Third, to reinforce the key ideas of solving and discovery of DEs using DNN, we provide a tutorial using DeepXDE, a Python package for developing PINNs, to develop DNN-DEs for solving and discovering a classic DE, the linear transport equation.

This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ($O(1 / k^2)$), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.

Neural operator architectures approximate operators between infinite-dimensional Banach spaces of functions. They are gaining increased attention in computational science and engineering, due to their potential both to accelerate traditional numerical methods and to enable data-driven discovery. A popular variant of neural operators is the Fourier neural operator (FNO). Previous analysis proving universal operator approximation theorems for FNOs resorts to use of an unbounded number of Fourier modes and limits the basic form of the method to problems with periodic geometry. Prior work relies on intuition from traditional numerical methods, and interprets the FNO as a nonstandard and highly nonlinear spectral method. The present work challenges this point of view in two ways: (i) the work introduces a new broad class of operator approximators, termed nonlocal neural operators (NNOs), which allow for operator approximation between functions defined on arbitrary geometries, and includes the FNO as a special case; and (ii) analysis of the NNOs shows that, provided this architecture includes computation of a spatial average (corresponding to retaining only a single Fourier mode in the special case of the FNO) it benefits from universal approximation. It is demonstrated that this theoretical result unifies the analysis of a wide range of neural operator architectures. Furthermore, it sheds new light on the role of nonlocality, and its interaction with nonlinearity, thereby paving the way for a more systematic exploration of nonlocality, both through the development of new operator learning architectures and the analysis of existing and new architectures.

We present a general kernel-based framework for learning operators between Banach spaces along with a priori error analysis and comprehensive numerical comparisons with popular neural net (NN) approaches such as Deep Operator Net (DeepONet) [Lu et al.] and Fourier Neural Operator (FNO) [Li et al.]. We consider the setting where the input/output spaces of target operator $\mathcal{G}^\dagger\,:\, \mathcal{U}\to \mathcal{V}$ are reproducing kernel Hilbert spaces (RKHS), the data comes in the form of partial observations $\phi(u_i), \varphi(v_i)$ of input/output functions $v_i=\mathcal{G}^\dagger(u_i)$ ($i=1,\ldots,N$), and the measurement operators $\phi\,:\, \mathcal{U}\to \mathbb{R}^n$ and $\varphi\,:\, \mathcal{V} \to \mathbb{R}^m$ are linear. Writing $\psi\,:\, \mathbb{R}^n \to \mathcal{U}$ and $\chi\,:\, \mathbb{R}^m \to \mathcal{V}$ for the optimal recovery maps associated with $\phi$ and $\varphi$, we approximate $\mathcal{G}^\dagger$ with $\bar{\mathcal{G}}=\chi \circ \bar{f} \circ \phi$ where $\bar{f}$ is an optimal recovery approximation of $f^\dagger:=\varphi \circ \mathcal{G}^\dagger \circ \psi\,:\,\mathbb{R}^n \to \mathbb{R}^m$. We show that, even when using vanilla kernels (e.g., linear or Mat\'{e}rn), our approach is competitive in terms of cost-accuracy trade-off and either matches or beats the performance of NN methods on a majority of benchmarks. Additionally, our framework offers several advantages inherited from kernel methods: simplicity, interpretability, convergence guarantees, a priori error estimates, and Bayesian uncertainty quantification. As such, it can serve as a natural benchmark for operator learning.

We propose an experimental scheme for performing sensitive, high-precision laser spectroscopy studies on fast exotic isotopes. By inducing a step-wise resonant ionization of the atoms travelling inside an electric field and subsequently detecting the ion and the corresponding electron, time- and position-sensitive measurements of the resulting particles can be performed. Using a Mixture Density Network (MDN), we can leverage this information to predict the initial energy of individual atoms and thus apply a Doppler correction of the observed transition frequencies on an event-by-event basis. We conduct numerical simulations of the proposed experimental scheme and show that kHz-level uncertainties can be achieved for ion beams produced at extreme temperatures ($> 10^8$ K), with energy spreads as large as $10$ keV and non-uniform velocity distributions. The ability to perform in-flight spectroscopy, directly on highly energetic beams, offers unique opportunities to studying short-lived isotopes with lifetimes in the millisecond range and below, produced in low quantities, in hot and highly contaminated environments, without the need for cooling techniques. Such species are of marked interest for nuclear structure, astrophysics, and new physics searches.

We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$, and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.

Motivated by the limited qubit capacity of current quantum systems, we study the quantum sample complexity of $k$-qubit quantum operators, i.e., operations applicable on only $k$ out of $d$ qubits. The problem is studied according to the quantum probably approximately correct (QPAC) model abiding by quantum mechanical laws such as no-cloning, state collapse, and measurement incompatibility. With the delicacy of quantum samples and the richness of quantum operations, one expects a significantly larger quantum sample complexity. This paper proves the contrary. We show that the quantum sample complexity of $k$-qubit quantum operations is comparable to the classical sample complexity of their counterparts (juntas), at least when $\frac{k}{d}\ll 1$. This is surprising, especially since sample duplication is prohibited, and measurement incompatibility would lead to an exponentially larger sample complexity with standard methods. Our approach is based on the Pauli decomposition of quantum operators and a technique that we name Quantum Shadow Sampling (QSS) to reduce the sample complexity exponentially. The results are proved by developing (i) a connection between the learning loss and the Pauli decomposition; (ii) a scalable QSS circuit for estimating the Pauli coefficients; and (iii) a quantum algorithm for learning $k$-qubit operators with sample complexity $O(\frac{k4^k}{\epsilon^2}\log d)$.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

北京阿比特科技有限公司