亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Efficiently representing source code is essential for various software engineering tasks such as code classification and code clone detection. Existing approaches for representing source code primarily use AST, and only a few works focus on semantic graphs such as CFG and PDG, which contain essential information about source code that AST does not have. Even though some works tried to utilize multiple representations, they do not provide any insights about the costs and benefits of using multiple representations against a single appropriate representation for the task. Moreover, they use hand-crafted program features to solve a specific task and have limited use cases. The primary goal of this paper is to discuss the implications of utilizing multiple code representations, specifically AST, CFG, and PDG, and how each of them affects the performance of a task. In this process, we use an approach that can use program features from multiple code graphs while not specifically coupling this approach to a specific task or a language. Our approach stems from the idea of modeling AST as a set of paths and using a learning model to capture program properties. We modify an existing AST path-based approach to accept multiple code representations as input. We do this since it allows us to measure the performance boost provided by additional representations over AST. We evaluate our approach on three tasks: Method Naming, Program Classification, and Code Clone Detection. Our approach increases the performance on these three tasks by 11% (F1), 15.7% (Accuracy), and 9.3% (F1), respectively, over the baseline. We discuss the impact of semantic features from the CFG and PDG paths on performance and the additional overheads incurred through our approach. We envision this work providing researchers with a lens to evaluate combinations of source code representations for various tasks.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

We propose a new paradigm for universal information extraction (IE) that is compatible with any schema format and applicable to a list of IE tasks, such as named entity recognition, relation extraction, event extraction and sentiment analysis. Our approach converts the text-based IE tasks as the token-pair problem, which uniformly disassembles all extraction targets into joint span detection, classification and association problems with a unified extractive framework, namely UniEX. UniEX can synchronously encode schema-based prompt and textual information, and collaboratively learn the generalized knowledge from pre-defined information using the auto-encoder language models. We develop a traffine attention mechanism to integrate heterogeneous factors including tasks, labels and inside tokens, and obtain the extraction target via a scoring matrix. Experiment results show that UniEX can outperform generative universal IE models in terms of performance and inference-speed on $14$ benchmarks IE datasets with the supervised setting. The state-of-the-art performance in low-resource scenarios also verifies the transferability and effectiveness of UniEX.

Generalization beyond in-domain experience to out-of-distribution data is of paramount significance in the AI domain. Of late, state-of-the-art Visual Question Answering (VQA) models have shown impressive performance on in-domain data, partially due to the language priors bias which, however, hinders the generalization ability in practice. This paper attempts to provide new insights into the influence of language modality on VQA performance from an empirical study perspective. To achieve this, we conducted a series of experiments on six models. The results of these experiments revealed that, 1) apart from prior bias caused by question types, there is a notable influence of postfix-related bias in inducing biases, and 2) training VQA models with word-sequence-related variant questions demonstrated improved performance on the out-of-distribution benchmark, and the LXMERT even achieved a 10-point gain without adopting any debiasing methods. We delved into the underlying reasons behind these experimental results and put forward some simple proposals to reduce the models' dependency on language priors. The experimental results demonstrated the effectiveness of our proposed method in improving performance on the out-of-distribution benchmark, VQA-CPv2. We hope this study can inspire novel insights for future research on designing bias-reduction approaches.

Knowledge Graphs (KGs) play a crucial role in enhancing e-commerce system performance by providing structured information about entities and their relationships, such as complementary or substitutable relations between products or product types, which can be utilized in recommender systems. However, relation labeling in KGs remains a challenging task due to the dynamic nature of e-commerce domains and the associated cost of human labor. Recently, breakthroughs in Large Language Models (LLMs) have shown surprising results in numerous natural language processing tasks. In this paper, we conduct an empirical study of LLMs for relation labeling in e-commerce KGs, investigating their powerful learning capabilities in natural language and effectiveness in predicting relations between product types with limited labeled data. We evaluate various LLMs, including PaLM and GPT-3.5, on benchmark datasets, demonstrating their ability to achieve competitive performance compared to humans on relation labeling tasks using just 1 to 5 labeled examples per relation. Additionally, we experiment with different prompt engineering techniques to examine their impact on model performance. Our results show that LLMs significantly outperform existing KG completion models in relation labeling for e-commerce KGs and exhibit performance strong enough to replace human labeling.

Online continual learning (OCL) research has primarily focused on mitigating catastrophic forgetting with fixed and limited storage allocation throughout the agent's lifetime. However, the growing affordability of data storage highlights a broad range of applications that do not adhere to these assumptions. In these cases, the primary concern lies in managing computational expenditures rather than storage. In this paper, we target such settings, investigating the online continual learning problem by relaxing storage constraints and emphasizing fixed, limited economical budget. We provide a simple algorithm that can compactly store and utilize the entirety of the incoming data stream under tiny computational budgets using a kNN classifier and universal pre-trained feature extractors. Our algorithm provides a consistency property attractive to continual learning: It will never forget past seen data. We set a new state of the art on two large-scale OCL datasets: Continual LOCalization (CLOC), which has 39M images over 712 classes, and Continual Google Landmarks V2 (CGLM), which has 580K images over 10,788 classes -- beating methods under far higher computational budgets than ours in terms of both reducing catastrophic forgetting of past data and quickly adapting to rapidly changing data streams. We provide code to reproduce our results at \url{//github.com/drimpossible/ACM}.

Neural network-based techniques for automated program repair are becoming increasingly effective. Despite their success, little is known about why they succeed or fail, and how their way of reasoning about the code to repair compares to human developers. This paper presents the first in-depth study comparing human and neural program repair. In particular, we investigate what parts of the buggy code humans and two state of the art neural repair models focus on. This comparison is enabled by a novel attention-tracking interface for human code editing, based on which we gather a dataset of 98 bug fixing sessions, and on the attention layers of neural repair models. Our results show that the attention of the humans and both neural models often overlaps (0.35 to 0.44 correlation). At the same time, the agreement between humans and models still leaves room for improvement, as evidenced by the higher human-human correlation of 0.56. While the two models either focus mostly on the buggy line or on the surrounding context, the developers adopt a hybrid approach that evolves over time, where 36.8% of the attention is given to the buggy line and the rest to the context. Overall, we find the humans to still be clearly more effective at finding a correct fix, with 67.3% vs. less than 3% correctly predicted patches. The results and data of this study are a first step into a deeper understanding of the internal process of neural program repair, and offer insights inspired by the behavior of human developers on how to further improve neural repair models.

Federated Learning (FL) is a privacy-preserving distributed machine learning approach geared towards applications in edge devices. However, the problem of designing custom neural architectures in federated environments is not tackled from the perspective of overall system efficiency. In this paper, we propose DC-NAS -- a divide-and-conquer approach that performs supernet-based Neural Architecture Search (NAS) in a federated system by systematically sampling the search space. We propose a novel diversified sampling strategy that balances exploration and exploitation of the search space by initially maximizing the distance between the samples and progressively shrinking this distance as the training progresses. We then perform channel pruning to reduce the training complexity at the devices further. We show that our approach outperforms several sampling strategies including Hadamard sampling, where the samples are maximally separated. We evaluate our method on the CIFAR10, CIFAR100, EMNIST, and TinyImagenet benchmarks and show a comprehensive analysis of different aspects of federated learning such as scalability, and non-IID data. DC-NAS achieves near iso-accuracy as compared to full-scale federated NAS with 50% fewer resources.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.The code and the pretrained models are available at //github.com/google-research/google-research/tree/master/albert.

北京阿比特科技有限公司