{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the effectiveness of token-level text augmentation and the role of probabilistic linguistic knowledge within a linguistically-motivated evaluation context. Two text augmentation programs, REDA and REDA$_{NG}$, were developed, both implementing five token-level text editing operations: Synonym Replacement (SR), Random Swap (RS), Random Insertion (RI), Random Deletion (RD), and Random Mix (RM). REDA$_{NG}$ leverages pretrained $n$-gram language models to select the most likely augmented texts from REDA's output. Comprehensive and fine-grained experiments were conducted on a binary question matching classification task in both Chinese and English. The results strongly refute the general effectiveness of the five token-level text augmentation techniques under investigation, whether applied together or separately, and irrespective of various common classification model types used, including transformers. Furthermore, the role of probabilistic linguistic knowledge is found to be minimal.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights. Each generated set of weights then produces a sequence of poses in an autoregressive manner between the current and target state of the character. In addition, to satisfy poses which are manually modified by the animators or where certain end effectors serve as constraints to be reached by the animation, a learned bi-directional control scheme is implemented to satisfy such constraints. The results demonstrate that using phases for motion in-betweening tasks sharpen the interpolated movements, and furthermore stabilizes the learning process. Moreover, using phases for motion in-betweening tasks can also synthesize more challenging movements beyond locomotion behaviors. Additionally, style control is enabled between given target keyframes. Our proposed framework can compete with popular state-of-the-art methods for motion in-betweening in terms of motion quality and generalization, especially in the existence of long transition durations. Our framework contributes to faster prototyping workflows for creating animated character sequences, which is of enormous interest for the game and film industry.

This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs). We focus on customizable optimization problems that necessitate repeated solving with slight variations in modeling and are user-specific, hence posing a challenge to devising a one-size-fits-all model. We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences while providing nonlinear reasoning capabilities. Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance. This enables LLMs to analyze, explain, and tackle a variety of instance-specific energy-related problems, pushing beyond the limits of current prompt-based techniques. Our research encompasses various commonplace tasks in the energy sector, from electric vehicle charging and Heating, Ventilation, and Air Conditioning (HVAC) control to long-term planning problems such as cost-benefit evaluations for installing rooftop solar photovoltaics (PVs) or heat pumps. This pilot study marks an essential stride towards the context-based formulation of optimization using LLMs, with the potential to democratize optimization processes. As a result, stakeholders are empowered to optimize their energy consumption, promoting sustainable energy practices customized to personal needs and preferences.

Quantum computation represents a computational paradigm whose distinctive attributes confer the ability to devise algorithms with asymptotic performance levels significantly superior to those achievable via classical computation. Recent strides have been taken to apply this computational framework in tackling and resolving various issues related to text processing. The resultant solutions demonstrate marked advantages over their classical counterparts. This study employs quantum computation to efficaciously surmount text processing challenges, particularly those involving string comparison. The focus is on the alignment of fixed-length substrings within two input strings. Specifically, given two input strings, $x$ and $y$, both of length $n$, and a value $d \leq n$, we want to verify the following conditions: the existence of a common prefix of length $d$, the presence of a common substring of length $d$ beginning at position $j$ (with $0 \leq j < n$) and, the presence of any common substring of length $d$ beginning in both strings at the same position. Such problems find applications as sub-procedures in a variety of problems concerning text processing and sequence analysis. Notably, our approach furnishes polylogarithmic solutions, a stark contrast to the linear complexity inherent in the best classical alternatives.

This paper investigates the problem of joint subcarrier and power allocation in the coexistence of radar and multi-user communication systems. Specifically, in our research scenario, the base station (BS) provides information transmission services for multiple users while ensuring that its interference to a separate radar system will not affect the radar's normal function. To this end, we propose a subcarrier and power allocation scheme based on orthogonal frequency division multiple access (OFDM). The original problem consisting involving multivariate fractional programming and binary variables is highly non-convex. Due to its complexity, we relax the binary constraint by introducing a penalty term, provided that the optimal solution is not affected. Then, by integrating multiple power variables into one matrix, the original problem is reformulated as a multi-ratio fractional programming (FP) problem, and finally a quadratic transform is employed to make the non-convex problem a sequence of convex problems. The numerical results indicate the performance trade-off between the multi-user communication system and the radar system, and notably that the performance of the communication system is not improved with power increase in the presence of radar interference beyond a certain threshold. This provides a useful insight for the energy-efficient design of the system.

Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司
{NG}$, were developed, both implementing five token-level text editing operations: Synonym Replacement (SR), Random Swap (RS), Random Insertion (RI), Random Deletion (RD), and Random Mix (RM). REDA 美国式禁忌电影在线观看免费观看,精品亚洲一区二区在线播放,亚洲精品网站久久人人爽人人,狠狠婷婷五月天激情综合,亚洲中日韩A无线 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the effectiveness of token-level text augmentation and the role of probabilistic linguistic knowledge within a linguistically-motivated evaluation context. Two text augmentation programs, REDA and REDA$_{NG}$, were developed, both implementing five token-level text editing operations: Synonym Replacement (SR), Random Swap (RS), Random Insertion (RI), Random Deletion (RD), and Random Mix (RM). REDA$_{NG}$ leverages pretrained $n$-gram language models to select the most likely augmented texts from REDA's output. Comprehensive and fine-grained experiments were conducted on a binary question matching classification task in both Chinese and English. The results strongly refute the general effectiveness of the five token-level text augmentation techniques under investigation, whether applied together or separately, and irrespective of various common classification model types used, including transformers. Furthermore, the role of probabilistic linguistic knowledge is found to be minimal.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights. Each generated set of weights then produces a sequence of poses in an autoregressive manner between the current and target state of the character. In addition, to satisfy poses which are manually modified by the animators or where certain end effectors serve as constraints to be reached by the animation, a learned bi-directional control scheme is implemented to satisfy such constraints. The results demonstrate that using phases for motion in-betweening tasks sharpen the interpolated movements, and furthermore stabilizes the learning process. Moreover, using phases for motion in-betweening tasks can also synthesize more challenging movements beyond locomotion behaviors. Additionally, style control is enabled between given target keyframes. Our proposed framework can compete with popular state-of-the-art methods for motion in-betweening in terms of motion quality and generalization, especially in the existence of long transition durations. Our framework contributes to faster prototyping workflows for creating animated character sequences, which is of enormous interest for the game and film industry.

This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs). We focus on customizable optimization problems that necessitate repeated solving with slight variations in modeling and are user-specific, hence posing a challenge to devising a one-size-fits-all model. We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences while providing nonlinear reasoning capabilities. Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance. This enables LLMs to analyze, explain, and tackle a variety of instance-specific energy-related problems, pushing beyond the limits of current prompt-based techniques. Our research encompasses various commonplace tasks in the energy sector, from electric vehicle charging and Heating, Ventilation, and Air Conditioning (HVAC) control to long-term planning problems such as cost-benefit evaluations for installing rooftop solar photovoltaics (PVs) or heat pumps. This pilot study marks an essential stride towards the context-based formulation of optimization using LLMs, with the potential to democratize optimization processes. As a result, stakeholders are empowered to optimize their energy consumption, promoting sustainable energy practices customized to personal needs and preferences.

Quantum computation represents a computational paradigm whose distinctive attributes confer the ability to devise algorithms with asymptotic performance levels significantly superior to those achievable via classical computation. Recent strides have been taken to apply this computational framework in tackling and resolving various issues related to text processing. The resultant solutions demonstrate marked advantages over their classical counterparts. This study employs quantum computation to efficaciously surmount text processing challenges, particularly those involving string comparison. The focus is on the alignment of fixed-length substrings within two input strings. Specifically, given two input strings, $x$ and $y$, both of length $n$, and a value $d \leq n$, we want to verify the following conditions: the existence of a common prefix of length $d$, the presence of a common substring of length $d$ beginning at position $j$ (with $0 \leq j < n$) and, the presence of any common substring of length $d$ beginning in both strings at the same position. Such problems find applications as sub-procedures in a variety of problems concerning text processing and sequence analysis. Notably, our approach furnishes polylogarithmic solutions, a stark contrast to the linear complexity inherent in the best classical alternatives.

This paper investigates the problem of joint subcarrier and power allocation in the coexistence of radar and multi-user communication systems. Specifically, in our research scenario, the base station (BS) provides information transmission services for multiple users while ensuring that its interference to a separate radar system will not affect the radar's normal function. To this end, we propose a subcarrier and power allocation scheme based on orthogonal frequency division multiple access (OFDM). The original problem consisting involving multivariate fractional programming and binary variables is highly non-convex. Due to its complexity, we relax the binary constraint by introducing a penalty term, provided that the optimal solution is not affected. Then, by integrating multiple power variables into one matrix, the original problem is reformulated as a multi-ratio fractional programming (FP) problem, and finally a quadratic transform is employed to make the non-convex problem a sequence of convex problems. The numerical results indicate the performance trade-off between the multi-user communication system and the radar system, and notably that the performance of the communication system is not improved with power increase in the presence of radar interference beyond a certain threshold. This provides a useful insight for the energy-efficient design of the system.

Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司
{NG}$ leverages pretrained $n$-gram language models to select the most likely augmented texts from REDA's output. Comprehensive and fine-grained experiments were conducted on a binary question matching classification task in both Chinese and English. The results strongly refute the general effectiveness of the five token-level text augmentation techniques under investigation, whether applied together or separately, and irrespective of various common classification model types used, including transformers. Furthermore, the role of probabilistic linguistic knowledge is found to be minimal. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the effectiveness of token-level text augmentation and the role of probabilistic linguistic knowledge within a linguistically-motivated evaluation context. Two text augmentation programs, REDA and REDA$_{NG}$, were developed, both implementing five token-level text editing operations: Synonym Replacement (SR), Random Swap (RS), Random Insertion (RI), Random Deletion (RD), and Random Mix (RM). REDA$_{NG}$ leverages pretrained $n$-gram language models to select the most likely augmented texts from REDA's output. Comprehensive and fine-grained experiments were conducted on a binary question matching classification task in both Chinese and English. The results strongly refute the general effectiveness of the five token-level text augmentation techniques under investigation, whether applied together or separately, and irrespective of various common classification model types used, including transformers. Furthermore, the role of probabilistic linguistic knowledge is found to be minimal.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights. Each generated set of weights then produces a sequence of poses in an autoregressive manner between the current and target state of the character. In addition, to satisfy poses which are manually modified by the animators or where certain end effectors serve as constraints to be reached by the animation, a learned bi-directional control scheme is implemented to satisfy such constraints. The results demonstrate that using phases for motion in-betweening tasks sharpen the interpolated movements, and furthermore stabilizes the learning process. Moreover, using phases for motion in-betweening tasks can also synthesize more challenging movements beyond locomotion behaviors. Additionally, style control is enabled between given target keyframes. Our proposed framework can compete with popular state-of-the-art methods for motion in-betweening in terms of motion quality and generalization, especially in the existence of long transition durations. Our framework contributes to faster prototyping workflows for creating animated character sequences, which is of enormous interest for the game and film industry.

This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs). We focus on customizable optimization problems that necessitate repeated solving with slight variations in modeling and are user-specific, hence posing a challenge to devising a one-size-fits-all model. We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences while providing nonlinear reasoning capabilities. Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance. This enables LLMs to analyze, explain, and tackle a variety of instance-specific energy-related problems, pushing beyond the limits of current prompt-based techniques. Our research encompasses various commonplace tasks in the energy sector, from electric vehicle charging and Heating, Ventilation, and Air Conditioning (HVAC) control to long-term planning problems such as cost-benefit evaluations for installing rooftop solar photovoltaics (PVs) or heat pumps. This pilot study marks an essential stride towards the context-based formulation of optimization using LLMs, with the potential to democratize optimization processes. As a result, stakeholders are empowered to optimize their energy consumption, promoting sustainable energy practices customized to personal needs and preferences.

Quantum computation represents a computational paradigm whose distinctive attributes confer the ability to devise algorithms with asymptotic performance levels significantly superior to those achievable via classical computation. Recent strides have been taken to apply this computational framework in tackling and resolving various issues related to text processing. The resultant solutions demonstrate marked advantages over their classical counterparts. This study employs quantum computation to efficaciously surmount text processing challenges, particularly those involving string comparison. The focus is on the alignment of fixed-length substrings within two input strings. Specifically, given two input strings, $x$ and $y$, both of length $n$, and a value $d \leq n$, we want to verify the following conditions: the existence of a common prefix of length $d$, the presence of a common substring of length $d$ beginning at position $j$ (with $0 \leq j < n$) and, the presence of any common substring of length $d$ beginning in both strings at the same position. Such problems find applications as sub-procedures in a variety of problems concerning text processing and sequence analysis. Notably, our approach furnishes polylogarithmic solutions, a stark contrast to the linear complexity inherent in the best classical alternatives.

This paper investigates the problem of joint subcarrier and power allocation in the coexistence of radar and multi-user communication systems. Specifically, in our research scenario, the base station (BS) provides information transmission services for multiple users while ensuring that its interference to a separate radar system will not affect the radar's normal function. To this end, we propose a subcarrier and power allocation scheme based on orthogonal frequency division multiple access (OFDM). The original problem consisting involving multivariate fractional programming and binary variables is highly non-convex. Due to its complexity, we relax the binary constraint by introducing a penalty term, provided that the optimal solution is not affected. Then, by integrating multiple power variables into one matrix, the original problem is reformulated as a multi-ratio fractional programming (FP) problem, and finally a quadratic transform is employed to make the non-convex problem a sequence of convex problems. The numerical results indicate the performance trade-off between the multi-user communication system and the radar system, and notably that the performance of the communication system is not improved with power increase in the presence of radar interference beyond a certain threshold. This provides a useful insight for the energy-efficient design of the system.

Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司