亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the complexity of digital circuits increases, High-Level Synthesis (HLS) is becoming a valuable tool to increase productivity and design reuse by utilizing relevant Electronic Design Automation (EDA) flows, either for Application-Specific Integrated Circuits (ASIC) or for Field Programmable Gate Arrays (FPGA). Side Channel Analysis (SCA) and Fault Injection (FI) attacks are powerful hardware attacks, capable of greatly weakening the theoretical security levels of secure implementations. Furthermore, critical applications demand high levels of reliability including fault tolerance. The lack of security and reliability driven optimizations in HLS tools makes it necessary for the HLS-based designs to validate that the properties of the algorithm and the countermeasures have not been compromised due to the HLS flow. In this work, we provide results on the resilience evaluation of HLS-based FPGA implementations for the aforementioned threats. As a test case, we use multiple versions of an on-the-fly SBOX algorithm integrating different countermeasures (hiding and masking), written in C and implemented using Vivado HLS. We perform extensive evaluations for all the designs and their optimization scenarios. The results provide evidence of issues arising due to HLS optimizations on the security and the reliability of cryptographic implementations. Furthermore, the results put HLS algorithms to the test of designing secure accelerators and can lead to improving them towards the goal of increasing productivity in the domain of secure and reliable cryptographic implementations.

相關內容

The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.

State-of-the-Art (SotA) hardware implementations of Deep Neural Networks (DNNs) incur high latencies and costs. Binary Neural Networks (BNNs) are potential alternative solutions to realize faster implementations without losing accuracy. In this paper, we first present a new data mapping, called TacitMap, suited for BNNs implemented based on a Computation-In-Memory (CIM) architecture. TacitMap maximizes the use of available parallelism, while CIM architecture eliminates the data movement overhead. We then propose a hardware accelerator based on optical phase change memory (oPCM) called EinsteinBarrier. Ein-steinBarrier incorporates TacitMap and adds an extra dimension for parallelism through wavelength division multiplexing, leading to extra latency reduction. The simulation results show that, compared to the SotA CIM baseline, TacitMap and EinsteinBarrier significantly improve execution time by up to ~154x and ~3113x, respectively, while also maintaining the energy consumption within 60% of that in the CIM baseline.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

Existing Self-Supervised Learning (SSL) models for speech typically process speech signals at a fixed resolution of 20 milliseconds. This approach overlooks the varying informational content present at different resolutions in speech signals. In contrast, this paper aims to incorporate multi-resolution information into speech self-supervised representation learning. We introduce a SSL model that leverages a hierarchical Transformer architecture, complemented by HuBERT-style masked prediction objectives, to process speech at multiple resolutions. Experimental results indicate that the proposed model not only achieves more efficient inference but also exhibits superior or comparable performance to the original HuBERT model over various tasks. Specifically, significant performance improvements over the original HuBERT have been observed in fine-tuning experiments on the LibriSpeech speech recognition benchmark as well as in evaluations using the Speech Universal PERformance Benchmark (SUPERB) and Multilingual SUPERB (ML-SUPERB).

The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has been widely used as a measure of computing performance for decades. The SPEC is an industry-standardized, CPU-intensive benchmark suite and the collective data provide a proxy for the history of worldwide CPU and system performance. Past efforts have not provided or enabled answers to questions such as, how has the SPEC benchmark suite evolved empirically over time and what micro-architecture artifacts have had the most influence on performance? -- have any micro-benchmarks within the suite had undue influence on the results and comparisons among the codes? -- can the answers to these questions provide insights to the future of computer system performance? To answer these questions, we detail our historical and statistical analysis of specific hardware artifacts (clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks since 1995. We discuss in detail several methods to normalize across benchmark evolutions. We perform both isolated and collective sensitivity analyses for various hardware artifacts and we identify one benchmark (libquantum) that had somewhat undue influence on performance outcomes. We also present the use of SPEC data to predict future performance.

The IoT's vulnerability to network attacks has motivated the design of intrusion detection schemes (IDS) using Machine Learning (ML), with a low computational cost for online detection but intensive offline learning. Such IDS can have high attack detection accuracy and are easily installed on servers that communicate with IoT devices. However, they are seldom evaluated in realistic operational conditions where IDS processing may be held up by the system overload created by attacks. Thus we first present an experimental study of UDP Flood Attacks on a Local Area Network Test-Bed, where the first line of defence is an accurate IDS using an Auto-Associative Dense Random Neural Network. The experiments reveal that during severe attacks, the packet and protocol management software overloads the multi-core server, and paralyses IDS detection. We therefore propose and experimentally evaluate an IDS design where decisions are made from a very small number of incoming packets, so that attacking traffic is dropped within milli-seconds after an attack begins and the paralysing effect of congestion is avoided.

Recently, foundational models such as CLIP and SAM have shown promising performance for the task of Zero-Shot Anomaly Segmentation (ZSAS). However, either CLIP-based or SAM-based ZSAS methods still suffer from non-negligible key drawbacks: 1) CLIP primarily focuses on global feature alignment across different inputs, leading to imprecise segmentation of local anomalous parts; 2) SAM tends to generate numerous redundant masks without proper prompt constraints, resulting in complex post-processing requirements. In this work, we innovatively propose a CLIP and SAM collaboration framework called ClipSAM for ZSAS. The insight behind ClipSAM is to employ CLIP's semantic understanding capability for anomaly localization and rough segmentation, which is further used as the prompt constraints for SAM to refine the anomaly segmentation results. In details, we introduce a crucial Unified Multi-scale Cross-modal Interaction (UMCI) module for interacting language with visual features at multiple scales of CLIP to reason anomaly positions. Then, we design a novel Multi-level Mask Refinement (MMR) module, which utilizes the positional information as multi-level prompts for SAM to acquire hierarchical levels of masks and merges them. Extensive experiments validate the effectiveness of our approach, achieving the optimal segmentation performance on the MVTec-AD and VisA datasets.

Most existing masked audio modeling (MAM) methods learn audio representations by masking and reconstructing local spectrogram patches. However, the reconstruction loss mainly accounts for the signal-level quality of the reconstructed spectrogram and is still limited in extracting high-level audio semantics. In this paper, we propose to enhance the semantic modeling of MAM by distilling cross-modality knowledge from contrastive language-audio pretraining (CLAP) representations for both masked and unmasked regions (MAM-CLAP) and leveraging a multi-objective learning strategy with a supervised classification branch (SupMAM), thereby providing more semantic knowledge for MAM and enabling it to effectively learn global features from labels. Experiments show that our methods significantly improve the performance on multiple downstream tasks. Furthermore, by combining our MAM-CLAP with SupMAM, we can achieve new state-of-the-art results on various audio and speech classification tasks, exceeding previous self-supervised learning and supervised pretraining methods.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司