Social platforms have emerged as a crucial platform for disseminating and discussing information about real-life events, which offers an excellent opportunity for early detection of newsworthy events. However, most existing approaches for event detection solely exploit keyword burstiness or network structures to detect hot events. Thus, they often fail to identify emerging social events before reaching a trending state regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, ambiguity, and irregular language, as well as variation in aspects of opinions. Moreover, learning the evolving characteristics of the events utilizing limited contextual knowledge is almost infeasible for machine learning models. To address these problems, in this paper, we propose a framework that exploits the lexical, semantic, and contextual representations of streaming social data. In particular, we leverage contextual knowledge to detect semantically related tweets in their earliest emergence and enhance the quality of produced clusters. We next produce a cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating the effectiveness of the proposed framework in detecting and distinguishing social events.
Temporal graph neural networks have shown promising results in learning inductive representations by automatically extracting temporal patterns. However, previous works often rely on complex memory modules or inefficient random walk methods to construct temporal representations. In addition, the existing dynamic graph encoders are non-trivial to adapt to self-supervised paradigms, which prevents them from utilizing unlabeled data. To address these limitations, we present an efficient yet effective attention-based encoder that leverages temporal edge encodings and window-based subgraph sampling to generate task-agnostic embeddings. Moreover, we propose a joint-embedding architecture using non-contrastive SSL to learn rich temporal embeddings without labels. Experimental results on 7 benchmark datasets indicate that on average, our model outperforms SoTA baselines on the future link prediction task by 4.23% for the transductive setting and 3.30% for the inductive setting while only requiring 5-10x less training/inference time. Additionally, we empirically validate the SSL pre-training significance under two probings commonly used in language and vision modalities. Lastly, different aspects of the proposed framework are investigated through experimental analysis and ablation studies.
With the recent wave of digitalization, specifically in the context of safety-critical applications, there has been a growing need for computationally efficient, accurate, generalizable, and trustworthy models. Physics-based models have traditionally been used extensively for simulating and understanding complex phenomena. However, these models though trustworthy and generalizable to a wide array of problems, are not ideal for real-time. To address this issue, the physics-based models are simplified. Unfortunately, these simplifications, like reducing the dimension of the problem (3D to 2D) or linearizing the highly non-linear characteristics of the problem, can degrade model accuracy. Data-driven models, on the other hand, can exhibit better computational efficiency and accuracy. However, they fail to generalize and operate as blackbox, limiting their acceptability in safety-critical applications. In the current article, we demonstrate how we can use a data-driven approach to correct for the two kinds of simplifications in a physics-based model. To demonstrate the methodology's effectiveness, we apply the method to model several elasticity problems. The results show that the hybrid approach, which we call the corrective source term approach, can make erroneous physics-based models more accurate and certain. The hybrid model also exhibits superior performance in terms of accuracy, model uncertainty, and generalizability when compared to its end-to-end data-driven modeling counterpart.
Static analysis tools have gained popularity among developers for finding potential bugs, but their widespread adoption is hindered by the accomnpanying high false alarm rates (up to 90%). To address this challenge, previous studies proposed the concept of actionable warnings, and apply machine-learning methods to distinguish actionable warnings from false alarms. Despite these efforts, our preliminary study suggests that the current methods used to collect actionable warnings are rather shaky and unreliable, resulting in a large proportion of invalid actionable warnings. In this work, we mined 68,274 reversions from Top-500 Github C repositories to create a substantia actionable warning dataset and assigned weak labels to each warning's likelihood of being a real bug. To automatically identify actionable warnings and recommend those with a high probability of being real bugs (AWHB), we propose a two-stage framework called ACWRecommender. In the first stage, our tool use a pre-trained model, i.e., UniXcoder, to identify actionable warnings from a huge number of SA tool's reported warnings. In the second stage, we rerank valid actionable warnings to the top by using weakly supervised learning. Experimental results showed that our tool outperformed several baselines for actionable warning detection (in terms of F1-score) and performed better for AWHB recommendation (in terms of nDCG and MRR). Additionaly, we also performed an in-the-wild evaluation, we manually validated 24 warnings out of 2,197 reported warnings on 10 randomly selected projects, 22 of which were confirmed by developers as real bugs, demonstrating the practical usage of our tool.
Event-centric structured prediction involves predicting structured outputs of events. In most NLP cases, event structures are complex with manifold dependency, and it is challenging to effectively represent these complicated structured events. To address these issues, we propose Structured Prediction with Energy-based Event-Centric Hyperspheres (SPEECH). SPEECH models complex dependency among event structured components with energy-based modeling, and represents event classes with simple but effective hyperspheres. Experiments on two unified-annotated event datasets indicate that SPEECH is predominant in event detection and event-relation extraction tasks.
Directed fuzzing is a dynamic testing technique that focuses exploration on specific, pre targeted program locations. Like other types of fuzzers, directed fuzzers are most effective when maximizing testing speed and precision. To this end, recent directed fuzzers have begun leveraging path pruning: preventing the wasteful testing of program paths deemed irrelevant to reaching a desired target location. Yet, despite code pruning's substantial speedup, current approaches are imprecise failing to capture indirect control flow requiring additional dynamic analyses that diminish directed fuzzers' speeds. Thus, without code pruning that is both fast and precise, directed fuzzers' effectiveness will continue to remain limited. This paper aims to tackle the challenge of upholding both speed and precision in pruning-based directed fuzzing. We show that existing pruning approaches fail to recover common case indirect control flow; and identify opportunities to enhance them with lightweight heuristics namely, function signature matching enabling them to maximize precision without the burden of dynamic analysis. We implement our enhanced pruning as a prototype, TOPr (Target Oriented Pruning), and evaluate it against the leading pruning based and pruning agnostic directed fuzzers SieveFuzz and AFLGo. We show that TOPr's enhanced pruning outperforms these fuzzers in (1) speed (achieving 222% and 73% higher test case throughput, respectively); (2) reachability (achieving 149% and 9% more target relevant coverage, respectively); and (3) bug discovery time (triggering bugs faster 85% and 8%, respectively). Furthermore, TOPr's balance of speed and precision enables it to find 24 new bugs in 5 open source applications, with 18 confirmed by developers, 12 bugs labelled as "Priority - 1. High", and 12 bugs fixed, underscoring the effectiveness of our framework.
A holistic understanding of object properties across diverse sensory modalities (e.g., visual, audio, and haptic) is essential for tasks ranging from object categorization to complex manipulation. Drawing inspiration from cognitive science studies that emphasize the significance of multi-sensory integration in human perception, we introduce MOSAIC (Multi-modal Object property learning with Self-Attention and Integrated Comprehension), a novel framework designed to facilitate the learning of unified multi-sensory object property representations. While it is undeniable that visual information plays a prominent role, we acknowledge that many fundamental object properties extend beyond the visual domain to encompass attributes like texture, mass distribution, or sounds, which significantly influence how we interact with objects. In MOSAIC, we leverage this profound insight by distilling knowledge from the extensive pre-trained Contrastive Language-Image Pre-training (CLIP) model, aligning these representations not only across vision but also haptic and auditory sensory modalities. Through extensive experiments on a dataset where a humanoid robot interacts with 100 objects across 10 exploratory behaviors, we demonstrate the versatility of MOSAIC in two task families: object categorization and object-fetching tasks. Our results underscore the efficacy of MOSAIC's unified representations, showing competitive performance in category recognition through a simple linear probe setup and excelling in the fetch object task under zero-shot transfer conditions. This work pioneers the application of CLIP-based sensory grounding in robotics, promising a significant leap in multi-sensory perception capabilities for autonomous systems. We have released the code, datasets, and additional results: //github.com/gtatiya/MOSAIC.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graphs in commonsense reasoning. To exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowledge extracted in the visual scene graph. Moreover, we introduce a method to train and generate domain-relevant visual scene graphs using textual annotations in a weakly-supervised manner. Extensive experiments on VCR and other tasks show a significant performance boost compared with the state-of-the-art methods and prove the efficacy of each proposed component.
Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.