亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, multimodal prompting, which introduces learnable missing-aware prompts for all missing modality cases, has exhibited impressive performance. However, it encounters two critical issues: 1) The number of prompts grows exponentially as the number of modalities increases; and 2) It lacks robustness in scenarios with different missing modality settings between training and inference. In this paper, we propose a simple yet effective prompt design to address these challenges. Instead of using missing-aware prompts, we utilize prompts as modality-specific tokens, enabling them to capture the unique characteristics of each modality. Furthermore, our prompt design leverages orthogonality between prompts as a key element to learn distinct information across different modalities and promote diversity in the learned representations. Extensive experiments demonstrate that our prompt design enhances both performance and robustness while reducing the number of prompts.

相關內容

Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection, because of its better interpretability. However, the existing NMF-based methods have the following three problems: 1) they directly transform the original network into community membership space, so it is difficult for them to capture the hierarchical information; 2) they often only pay attention to the topology of the network and ignore its node attributes; 3) it is hard for them to learn the global structure information necessary for community detection. Therefore, we propose a new community detection algorithm, named Contrastive Deep Nonnegative Matrix Factorization (CDNMF). Firstly, we deepen NMF to strengthen its capacity for information extraction. Subsequently, inspired by contrastive learning, our algorithm creatively constructs network topology and node attributes as two contrasting views. Furthermore, we utilize a debiased negative sampling layer and learn node similarity at the community level, thereby enhancing the suitability of our model for community detection. We conduct experiments on three public real graph datasets and the proposed model has achieved better results than state-of-the-art methods. Code available at //github.com/6lyc/CDNMF.git.

Given an edge-weighted metric complete graph with $n$ vertices, the maximum weight metric triangle packing problem is to find a set of $n/3$ vertex-disjoint triangles with the total weight of all triangles in the packing maximized. Several simple methods can lead to a 2/3-approximation ratio. However, this barrier is not easy to break. Chen et al. proposed a randomized approximation algorithm with an expected ratio of $(0.66768-\varepsilon)$ for any constant $\varepsilon>0$. In this paper, we improve the approximation ratio to $(0.66835-\varepsilon)$. Furthermore, we can derandomize our algorithm.

Quantum devices use qubits to represent information, which allows them to exploit important properties from quantum physics, specifically superposition and entanglement. As a result, quantum computers have the potential to outperform the most advanced classical computers. In recent years, quantum algorithms have shown hints of this promise, and many algorithms have been proposed for the quantum domain. There are two key hurdles to solving difficult real-world problems on quantum computers. The first is on the hardware front -- the number of qubits in the most advanced quantum systems is too small to make the solution of large problems practical. The second involves the algorithms themselves -- as quantum computers use qubits, the algorithms that work there are fundamentally different from those that work on traditional computers. As a result of these constraints, research has focused on developing approaches to solve small versions of problems as proofs of concept -- recognizing that it would be possible to scale these up once quantum devices with enough qubits become available. Our objective in this paper is along the same lines. We present a quantum approach to solve a well-studied problem in the context of data sharing. This heuristic uses the well-known Quantum Approximate Optimization Algorithm (QAOA). We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms. The results show that the method has potential and provide answers close to optimal. At the same time, we realize there are opportunities for improving the method further.

In this contribution, we discuss the basic concepts of genotypes and phenotypes in tree-based GP (TGP), and then analyze their behavior using five benchmark datasets. We show that TGP exhibits the same behavior that we can observe in other GP representations: At the genotypic level trees show frequently unchecked growth with seemingly ineffective code, but on the phenotypic level, much smaller trees can be observed. To generate phenotypes, we provide a unique technique for removing semantically ineffective code from GP trees. The approach extracts considerably simpler phenotypes while not being limited to local operations in the genotype. We generalize this transformation based on a problem-independent parameter that enables a further simplification of the exact phenotype by coarse-graining to produce approximate phenotypes. The concept of these phenotypes (exact and approximate) allows us to clarify what evolved solutions truly predict, making GP models considered at the phenotypic level much better interpretable.

Bayesian optimization has been successfully applied to optimize black-box functions where the number of evaluations is severely limited. However, in many real-world applications, it is hard or impossible to know in advance which designs are feasible due to some physical or system limitations. These issues lead to an even more challenging problem of optimizing an unknown function with unknown constraints. In this paper, we observe that in such scenarios optimal solution typically lies on the boundary between feasible and infeasible regions of the design space, making it considerably more difficult than that with interior optima. Inspired by this observation, we propose BE-CBO, a new Bayesian optimization method that efficiently explores the boundary between feasible and infeasible designs. To identify the boundary, we learn the constraints with an ensemble of neural networks that outperform the standard Gaussian Processes for capturing complex boundaries. Our method demonstrates superior performance against state-of-the-art methods through comprehensive experiments on synthetic and real-world benchmarks.

Robust fine-tuning aims to ensure performance on out-of-distribution (OOD) samples, which is sometimes compromised by pursuing adaptation on in-distribution (ID) samples. However, another criterion for reliable machine learning -- confidence calibration has been overlooked despite its increasing demand for real-world high-stakes applications, e.g., autonomous driving. We raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning hurt the calibration of pre-trained VLMs, especially on OOD datasets. We first show the OOD calibration error is bounded from above with ID calibration errors and domain discrepancy between ID and OOD. From this analysis, we propose CaRot, a calibrated robust fine-tuning method that incentivizes ID calibration and robust prediction across domains to reduce the upper bound of OOD calibration error. Extensive experiments on three types of distribution shifts (natural, synthetic, and adversarial) on ImageNet-1K classification demonstrate the effectiveness of CaRot across diverse environments. We justify the empirical success of CaRot through our theoretical analysis.

The use of synthetic data in machine learning saves a significant amount of time when implementing an effective object detector. However, there is limited research in this domain. This study aims to improve upon previously applied implementations in the task of instance segmentation of pallets in a warehouse environment. This study proposes using synthetically generated domain-randomised data as well as data generated through Unity to achieve this. This study achieved performance improvements on the stacked and racked pallet categories by 69% and 50% mAP50, respectively when being evaluated on real data. Additionally, it was found that there was a considerable impact on the performance of a model when it was evaluated against images in a darker environment, dropping as low as 3% mAP50 when being evaluated on images with an 80% brightness reduction. This study also created a two-stage detector that used YOLOv8 and SAM, but this proved to have unstable performance. The use of domain-randomised data proved to have negligible performance improvements when compared to the Unity-generated data.

This work proposes a class of locally differentially private mechanisms for linear queries, in particular range queries, that leverages correlated input perturbation to simultaneously achieve unbiasedness, consistency, statistical transparency, and control over utility requirements in terms of accuracy targets expressed either in certain query margins or as implied by the hierarchical database structure. The proposed Cascade Sampling algorithm instantiates the mechanism exactly and efficiently. Our bounds show that we obtain near-optimal utility while being empirically competitive against output perturbation methods.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司