High spatial resolution wind data are essential for a wide range of applications in climate, oceanographic and meteorological studies. Large-scale spatial interpolation or downscaling of bivariate wind fields having velocity in two dimensions is a challenging task because wind data tend to be non-Gaussian with high spatial variability and heterogeneity. In spatial statistics, cokriging is commonly used for predicting bivariate spatial fields. However, the cokriging predictor is not optimal except for Gaussian processes. Additionally, cokriging is computationally prohibitive for large datasets. In this paper, we propose a method, called bivariate DeepKriging, which is a spatially dependent deep neural network (DNN) with an embedding layer constructed by spatial radial basis functions for bivariate spatial data prediction. We then develop a distribution-free uncertainty quantification method based on bootstrap and ensemble DNN. Our proposed approach outperforms the traditional cokriging predictor with commonly used covariance functions, such as the linear model of co-regionalization and flexible bivariate Mat\'ern covariance. We demonstrate the computational efficiency and scalability of the proposed DNN model, with computations that are, on average, 20 times faster than those of conventional techniques. We apply the bivariate DeepKriging method to the wind data over the Middle East region at 506,771 locations. The prediction performance of the proposed method is superior over the cokriging predictors and dramatically reduces computation time.
Existing Video Restoration (VR) methods always necessitate the individual deployment of models for each adverse weather to remove diverse adverse weather degradations, lacking the capability for adaptive processing of degradations. Such limitation amplifies the complexity and deployment costs in practical applications. To overcome this deficiency, in this paper, we propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR, which enables the employment of a single model to remove diverse degradations for the first time. Specifically, the proposed CDUN accomplishes a novel iterative optimization framework, capable of restoring frames corrupted by corresponding degradations according to the degradation features given in advance. To empower the framework for eliminating diverse degradations, we devise a Sequence-wise Adaptive Degradation Estimator (SADE) to estimate degradation features for the input corrupted video. By orchestrating these two cascading procedures, CDUN achieves adaptive processing for diverse degradation. In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames. This strategy involves the progressive stacking of temporal windows in multiple iterations, effectively enlarging the temporal receptive field and enabling each frame's restoration to leverage information from distant frames. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance in All-In-One VR.
As deeper and more complex models are developed for the task of sound event localization and detection (SELD), the demand for annotated spatial audio data continues to increase. Annotating field recordings with 360$^{\circ}$ video takes many hours from trained annotators, while recording events within motion-tracked laboratories are bounded by cost and expertise. Because of this, localization models rely on a relatively limited amount of spatial audio data in the form of spatial room impulse response (SRIR) datasets, which limits the progress of increasingly deep neural network based approaches. In this work, we demonstrate that simulated geometrical acoustics can provide an appealing solution to this problem. We use simulated geometrical acoustics to generate a novel SRIR dataset that can train a SELD model to provide similar performance to that of a real SRIR dataset. Furthermore, we demonstrate using simulated data to augment existing datasets, improving on benchmarks set by state of the art SELD models. We explore the potential and limitations of geometric acoustic simulation for localization and event detection. We also propose further studies to verify the limitations of this method, as well as further methods to generate synthetic data for SELD tasks without the need to record more data.
Unmanned aerial vehicles (UAVs) are frequently used for aerial mapping and general monitoring tasks. Recent progress in deep learning enabled automated semantic segmentation of imagery to facilitate the interpretation of large-scale complex environments. Commonly used supervised deep learning for segmentation relies on large amounts of pixel-wise labelled data, which is tedious and costly to annotate. The domain-specific visual appearance of aerial environments often prevents the usage of models pre-trained on publicly available datasets. To address this, we propose a novel general planning framework for UAVs to autonomously acquire informative training images for model re-training. We leverage multiple acquisition functions and fuse them into probabilistic terrain maps. Our framework combines the mapped acquisition function information into the UAV's planning objectives. In this way, the UAV adaptively acquires informative aerial images to be manually labelled for model re-training. Experimental results on real-world data and in a photorealistic simulation show that our framework maximises model performance and drastically reduces labelling efforts. Our map-based planners outperform state-of-the-art local planning.
Surface reconstruction is very challenging when the input point clouds, particularly real scans, are noisy and lack normals. Observing that the Multilayer Perceptron (MLP) and the implicit moving least-square function (IMLS) provide a dual representation of the underlying surface, we introduce Neural-IMLS, a novel approach that directly learns the noise-resistant signed distance function (SDF) from unoriented raw point clouds in a self-supervised fashion. We use the IMLS to regularize the distance values reported by the MLP while using the MLP to regularize the normals of the data points for running the IMLS. We also prove that at the convergence, our neural network, benefiting from the mutual learning mechanism between the MLP and the IMLS, produces a faithful SDF whose zero-level set approximates the underlying surface. We conducted extensive experiments on various benchmarks, including synthetic scans and real scans. The experimental results show that {\em Neural-IMLS} can reconstruct faithful shapes on various benchmarks with noise and missing parts. The source code can be found at~\url{//github.com/bearprin/Neural-IMLS}.
Weather forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of weather systems remains a challenge for traditional statistical models. Apart from Auto Regressive time forecasting models like ARIMA, deep learning techniques (Vanilla ANNs, LSTM and GRU networks), have shown promise in improving forecasting accuracy by capturing temporal dependencies. This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO), to automate the search for optimal hyperparameters in these model architectures. Metaheuristic algorithms excel in global optimization, offering robustness, versatility, and scalability in handling non-linear problems. We present a comparative analysis of different model architectures integrated with metaheuristic optimization, evaluating their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). The results demonstrate the potential of metaheuristic algorithms in enhancing weather forecasting accuracy \& helps in determining the optimal set of hyper-parameters for each model. The paper underscores the importance of harnessing advanced optimization techniques to select the most suitable metaheuristic algorithm for the given weather forecasting task.
Current time-series forecasting problems use short-term weather attributes as exogenous inputs. However, in specific time-series forecasting solutions (e.g., demand prediction in the supply chain), seasonal climate predictions are crucial to improve its resilience. Representing mid to long-term seasonal climate forecasts is challenging as seasonal climate predictions are uncertain, and encoding spatio-temporal relationship of climate forecasts with demand is complex. We propose a novel modeling framework that efficiently encodes seasonal climate predictions to provide robust and reliable time-series forecasting for supply chain functions. The encoding framework enables effective learning of latent representations -- be it uncertain seasonal climate prediction or other time-series data (e.g., buyer patterns) -- via a modular neural network architecture. Our extensive experiments indicate that learning such representations to model seasonal climate forecast results in an error reduction of approximately 13\% to 17\% across multiple real-world data sets compared to existing demand forecasting methods.
Large-scale meteorological disasters are increasing around the world, and power outage damage by natural disaster such as typhoons and earthquakes is increasing in Japan as well. Corresponding to the need of reduction of economic losses due to power outages, we are promoting research of resilient grids that minimizes power outage duration. In this report, we propose PACEM (Poles-Aware moving Cost Estimation Method) for determining travel costs between failure points based on the tilt angle and direction of electric poles obtained from pole-mounted sensors and road condition data. Evaluation result shows that the total recovery time can be reduced by 28% in the target area.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.
Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.