As research in deep neural networks has advanced, deep convolutional networks have become feasible for automated driving tasks. In particular, there is an emerging trend of employing end-to-end neural network models for the automation of driving tasks. However, previous research has shown that deep neural network classifiers are vulnerable to adversarial attacks. For regression tasks, however, the effect of adversarial attacks is not as well understood. In this paper, we devise two white-box targeted attacks against end-to-end autonomous driving systems. The driving systems use a regression model that takes an image as input and outputs a steering angle. Our attacks manipulate the behavior of the autonomous driving system by perturbing the input image. Both attacks can be initiated in real-time on CPUs without employing GPUs. The efficiency of the attacks is illustrated using experiments conducted in Udacity. Demo video: //youtu.be/I0i8uN2oOP0.
Autonomous driving is complex, requiring sophisticated 3D scene understanding, localization, mapping, and control. Rather than explicitly modelling and fusing each of these components, we instead consider an end-to-end approach via reinforcement learning (RL). However, collecting exploration driving data in the real world is impractical and dangerous. While training in simulation and deploying visual sim-to-real techniques has worked well for robot manipulation, deploying beyond controlled workspace viewpoints remains a challenge. In this paper, we address this challenge by presenting Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving, without using any real-world data. This is done by learning to translate randomized simulation images into simulated segmentation and depth maps, subsequently enabling real-world images to also be translated. This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world. Our approach, which can be trained in 48 hours on 1 GPU, can perform equally as well as a classical perception and control stack that took thousands of engineering hours over several months to build. We hope this work motivates future end-to-end autonomous driving research.
Recent research has shown that Machine Learning/Deep Learning (ML/DL) models are particularly vulnerable to adversarial perturbations, which are small changes made to the input data in order to fool a machine learning classifier. The Digital Twin, which is typically described as consisting of a physical entity, a virtual counterpart, and the data connections in between, is increasingly being investigated as a means of improving the performance of physical entities by leveraging computational techniques, which are enabled by the virtual counterpart. This paper explores the susceptibility of Digital Twin (DT), a virtual model designed to accurately reflect a physical object using ML/DL classifiers that operate as Cyber Physical Systems (CPS), to adversarial attacks. As a proof of concept, we first formulate a DT of a vehicular system using a deep neural network architecture and then utilize it to launch an adversarial attack. We attack the DT model by perturbing the input to the trained model and show how easily the model can be broken with white-box attacks.
Verification and validation of fully automated vehicles is linked to an almost intractable challenge of reflecting the real world with all its interactions in a virtual environment. Influential stochastic parameters need to be extracted from real-world measurements and real-time data, capturing all interdependencies, for an accurate simulation of reality. A copula is a probability model that represents a multivariate distribution, examining the dependence between the underlying variables. This model is used on drone measurement data from a roundabout containing dependent stochastic parameters. With the help of the copula model, samples are generated that reflect the real-time data. Resulting applications and possible extensions are discussed and explored.
We introduce the Lossy Implicit Network Activation Coding (LINAC) defence, an input transformation which successfully hinders several common adversarial attacks on CIFAR-$10$ classifiers for perturbations up to $\epsilon = 8/255$ in $L_\infty$ norm and $\epsilon = 0.5$ in $L_2$ norm. Implicit neural representations are used to approximately encode pixel colour intensities in $2\text{D}$ images such that classifiers trained on transformed data appear to have robustness to small perturbations without adversarial training or large drops in performance. The seed of the random number generator used to initialise and train the implicit neural representation turns out to be necessary information for stronger generic attacks, suggesting its role as a private key. We devise a Parametric Bypass Approximation (PBA) attack strategy for key-based defences, which successfully invalidates an existing method in this category. Interestingly, our LINAC defence also hinders some transfer and adaptive attacks, including our novel PBA strategy. Our results emphasise the importance of a broad range of customised attacks despite apparent robustness according to standard evaluations. LINAC source code and parameters of defended classifier evaluated throughout this submission are available: //github.com/deepmind/linac
The overall goal of this work is to enrich training data for automated driving with so called corner cases. In road traffic, corner cases are critical, rare and unusual situations that challenge the perception by AI algorithms. For this purpose, we present the design of a test rig to generate synthetic corner cases using a human-in-the-loop approach. For the test rig, a real-time semantic segmentation network is trained and integrated into the driving simulation software CARLA in such a way that a human can drive on the network's prediction. In addition, a second person gets to see the same scene from the original CARLA output and is supposed to intervene with the help of a second control unit as soon as the semantic driver shows dangerous driving behavior. Interventions potentially indicate poor recognition of a critical scene by the segmentation network and then represents a corner case. In our experiments, we show that targeted enrichment of training data with corner cases leads to improvements in pedestrian detection in safety relevant episodes in road traffic.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.