亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A promising approach for obtaining improved approximation algorithms for Steiner tree is to use the bidirected cut relaxation (BCR). The integrality gap of this relaxation is at least $36/31$, and it has long been conjectured that its true value is very close to this lower bound. However, the best upper bound for general graphs is still $2$. With the aim of circumventing the asymmetric nature of BCR, Chakrabarty, Devanur and Vazirani [Math. Program., 130 (2011), pp. 1--32] introduced the simplex-embedding LP, which is equivalent to it. Using this, they gave a $\sqrt{2}$-approximation algorithm for quasi-bipartite graphs and showed that the integrality gap of the relaxation is at most $4/3$ for this class of graphs. In this paper, we extend the approach provided by these authors and show that the integrality gap of BCR is at most $7/6$ on quasi-bipartite graphs via a fast combinatorial algorithm. In doing so, we introduce a general technique, in particular a potentially widely applicable extension of the primal-dual schema. Roughly speaking, we apply the schema twice with variable rates of growth for the duals in the second phase, where the rates depend on the degrees of the duals computed in the first phase. This technique breaks the disadvantage of increasing dual variables in a monotone manner and creates a larger total dual value, thus presumably attaining the true integrality gap.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

An informative measurement is the most efficient way to gain information about an unknown state. We give a first-principles derivation of a general-purpose dynamic programming algorithm that returns an optimal sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. The algorithm is applicable to states and controls that are continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes and Gaussian processes. Recent results from approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow the measurement task to be solved in real-time. The resulting solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly used greedy approaches. This is demonstrated for a global search problem, where on-line planning with an extended local search is found to reduce the number of measurements in the search by approximately half. A variant of the algorithm is derived for Gaussian processes for active sensing.

A \emph{general branch-and-bound tree} is a branch-and-bound tree which is allowed to use general disjunctions of the form $\pi^{\top} x \leq \pi_0 \,\vee\, \pi^{\top}x \geq \pi_0 + 1$, where $\pi$ is an integer vector and $\pi_0$ is an integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and a Traveling Salesman Problem instance, such that any general branch-and-bound tree that solves these instances must be of exponential size. We also verify that an exponential lower bound on the size of general branch-and-bound trees persists when we add Gaussian noise to the coefficients of the cross polytope, thus showing that polynomial-size "smoothed analysis" upper bound is not possible. The results in this paper can be viewed as the branch-and-bound analog of the seminal paper by Chv\'atal et al. \cite{chvatal1989cutting}, who proved lower bounds for the Chv\'atal-Gomory rank.

We show that there exists no algorithm that decides for any bilinear system $(B,v)$ if the growth rate of $(B,v)$ is $1$. This answers a question of Bui who showed that if the coefficients are positive the growth rate is computable (i.e., there is an algorithm that outputs the sequence of digits of the growth rate of $(B,v)$). Our proof is based on a reduction of the computation of the joint spectral radius of a set of matrices to the computation of the growth rate of a bilinear system. We also use our reduction to deduce that there exists no algorithm that approximates the growth rate of a bilinear system with relative accuracy $\varepsilon$ in time polynomial in the size of the system and of $\varepsilon$. Our two results hold even if all the coefficients are nonnegative rationals.

For an integer $k \geq 1$ and a graph $G$, let $\mathcal{K}_k(G)$ be the graph that has vertex set all proper $k$-colorings of $G$, and an edge between two vertices $\alpha$ and~$\beta$ whenever the coloring~$\beta$ can be obtained from $\alpha$ by a single Kempe change. A theorem of Meyniel from 1978 states that $\mathcal{K}_5(G)$ is connected with diameter $O(5^{|V(G)|})$ for every planar graph $G$. We significantly strengthen this result, by showing that there is a positive constant $c$ such that $\mathcal{K}_5(G)$ has diameter $O(|V(G)|^c)$ for every planar graph $G$.

We consider infinite-horizon discounted Markov decision problems with finite state and action spaces. We show that with direct parametrization in the policy space, the weighted value function, although non-convex in general, is both quasi-convex and quasi-concave. While quasi-convexity helps explain the convergence of policy gradient methods to global optima, quasi-concavity hints at their convergence guarantees using arbitrarily large step sizes that are not dictated by the Lipschitz constant charactering smoothness of the value function. In particular, we show that when using geometrically increasing step sizes, a general class of policy mirror descent methods, including the natural policy gradient method and a projected Q-descent method, all enjoy a linear rate of convergence without relying on entropy or other strongly convex regularization. In addition, we develop a theory of weak gradient-mapping dominance and use it to prove sharper sublinear convergence rate of the projected policy gradient method. Finally, we also analyze the convergence rate of an inexact policy mirror descent method and estimate its sample complexity under a simple generative model.

Schelling's model considers $k$ types of agents each of whom needs to select a vertex on an undirected graph, where every agent prefers to neighbor agents of the same type. We are motivated by a recent line of work that studies solutions that are optimal with respect to notions related to the welfare of the agents. We explore the parameterized complexity of computing such solutions. We focus on the well-studied notions of social welfare (WO) and Pareto optimality (PO), alongside the recently proposed notions of group-welfare optimality (GWO) and utility-vector optimality (UVO), both of which lie between WO and PO. Firstly, we focus on the fundamental case where $k=2$ and there are $r$ red agents and $b$ blue agents. We show that all solution-notions we consider are $\textsf{NP}$-hard to compute even when $b=1$ and that they are $\textsf{W}[1]$-hard when parameterized by $r$ and $b$. In addition, we show that WO and GWO are $\textsf{NP}$-hard even on cubic graphs. We complement these negative results by an $\textsf{FPT}$ algorithm parameterized by $r, b$ and the maximum degree of the graph. For the general case with $k$ types of agents, we prove that for any of the notions we consider the problem is $\textsf{W}[1]$-hard when parameterized by $k$ for a large family of graphs that includes trees. We accompany these negative results with an $\textsf{XP}$ algorithm parameterized by $k$ and the treewidth of the graph.

This paper presents a systematic theoretical framework to derive the energy identities of general implicit and explicit Runge--Kutta (RK) methods for linear seminegative systems. It generalizes the stability analysis of explicit RK methods in [Z. Sun and C.-W. Shu, SIAM J. Numer. Anal., 57 (2019), pp. 1158-1182]. The established energy identities provide a precise characterization on whether and how the energy dissipates in the RK discretization, thereby leading to weak and strong stability criteria of RK methods. Furthermore, we discover a unified energy identity for all the diagonal Pade approximations, based on an analytical Cholesky type decomposition of a class of symmetric matrices. The structure of the matrices is very complicated, rendering the discovery of the unified energy identity and the proof of the decomposition highly challenging. Our proofs involve the construction of technical combinatorial identities and novel techniques from the theory of hypergeometric series. Our framework is motivated by a discrete analogue of integration by parts technique and a series expansion of the continuous energy law. In some special cases, our analyses establish a close connection between the continuous and discrete energy laws, enhancing our understanding of their intrinsic mechanisms. Several specific examples of implicit methods are given to illustrate the discrete energy laws. A few numerical examples further confirm the theoretical properties.

Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improving intersection traffic mobility. In this paper, we propose a graph-based cooperation method to formalize the conflict-free scheduling problem at an unsignalized intersection. Based on graphical analysis, a vehicle's trajectory conflict relationship is modeled as a conflict directed graph and a coexisting undirected graph. Then, two graph-based methods are proposed to find the vehicle passing order. The first is an improved depth-first spanning tree algorithm, which aims to find the local optimal passing order vehicle by vehicle. The other novel method is a minimum clique cover algorithm, which identifies the global optimal solution. Finally, a distributed control framework and communication topology are presented to realize the conflict-free cooperation of vehicles. Extensive numerical simulations are conducted for various numbers of vehicles and traffic volumes, and the simulation results prove the effectiveness of the proposed algorithms.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

北京阿比特科技有限公司