亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deploying deep convolutional neural network (CNN) models on ubiquitous Internet of Things (IoT) devices has attracted much attention from industry and academia since it greatly facilitates our lives by providing various rapid-response services. Due to the limited resources of IoT devices, cloud-assisted training of CNN models has become the mainstream. However, most existing related works suffer from a large amount of model parameter transmission and weak model robustness. To this end, this paper proposes a cloud-assisted CNN training framework with low model parameter transmission and strong model robustness. In the proposed framework, we first introduce MonoCNN, which contains only a few learnable filters, and other filters are nonlearnable. These nonlearnable filter parameters are generated according to certain rules, i.e., the filter generation function (FGF), and can be saved and reproduced by a few random seeds. Thus, the cloud server only needs to send these learnable filters and a few seeds to the IoT device. Compared to transmitting all model parameters, sending several learnable filter parameters and seeds can significantly reduce parameter transmission. Then, we investigate multiple FGFs and enable the IoT device to use the FGF to generate multiple filters and combine them into MonoCNN. Thus, MonoCNN is affected not only by the training data but also by the FGF. The rules of the FGF play a role in regularizing the MonoCNN, thereby improving its robustness. Experimental results show that compared to state-of-the-art methods, our proposed framework can reduce a large amount of model parameter transfer between the cloud server and the IoT device while improving the performance by approximately 2.2% when dealing with corrupted data. The code is available at //github.com/evoxlos/mono-cnn-pytorch.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · 類別 · Networking · ·
2023 年 2 月 14 日

The presence of a large number of bots in Online Social Networks (OSN) leads to undesirable social effects. Graph neural networks (GNNs) have achieved state-of-the-art performance in bot detection since they can effectively utilize user interaction. In most scenarios, the distribution of bots and humans is imbalanced, resulting in under-represent minority class samples and sub-optimal performance. However, previous GNN-based methods for bot detection seldom consider the impact of class-imbalanced issues. In this paper, we propose an over-sampling strategy for GNN (OS-GNN) that can mitigate the effect of class imbalance in bot detection. Compared with previous over-sampling methods for GNNs, OS-GNN does not call for edge synthesis, eliminating the noise inevitably introduced during the edge construction. Specifically, node features are first mapped to a feature space through neighborhood aggregation and then generated samples for the minority class in the feature space. Finally, the augmented features are fed into GNNs to train the classifiers. This framework is general and can be easily extended into different GNN architectures. The proposed framework is evaluated using three real-world bot detection benchmark datasets, and it consistently exhibits superiority over the baselines.

Trojan attacks on deep neural networks are both dangerous and surreptitious. Over the past few years, Trojan attacks have advanced from using only a single input-agnostic trigger and targeting only one class to using multiple, input-specific triggers and targeting multiple classes. However, Trojan defenses have not caught up with this development. Most defense methods still make inadequate assumptions about Trojan triggers and target classes, thus, can be easily circumvented by modern Trojan attacks. To deal with this problem, we propose two novel "filtering" defenses called Variational Input Filtering (VIF) and Adversarial Input Filtering (AIF) which leverage lossy data compression and adversarial learning respectively to effectively purify potential Trojan triggers in the input at run time without making assumptions about the number of triggers/target classes or the input dependence property of triggers. In addition, we introduce a new defense mechanism called "Filtering-then-Contrasting" (FtC) which helps avoid the drop in classification accuracy on clean data caused by "filtering", and combine it with VIF/AIF to derive new defenses of this kind. Extensive experimental results and ablation studies show that our proposed defenses significantly outperform well-known baseline defenses in mitigating five advanced Trojan attacks including two recent state-of-the-art while being quite robust to small amounts of training data and large-norm triggers.

Faced with data-driven policies, individuals will manipulate their features to obtain favorable decisions. While earlier works cast these manipulations as undesirable gaming, recent works have adopted a more nuanced causal framing in which manipulations can improve outcomes of interest, and setting coherent mechanisms requires accounting for both predictive accuracy and improvement of the outcome. Typically, these works focus on known causal graphs, consisting only of an outcome and its parents. In this paper, we introduce a general framework in which an outcome and n observed features are related by an arbitrary unknown graph and manipulations are restricted by a fixed budget and cost structure. We develop algorithms that leverage strategic responses to discover the causal graph in a finite number of steps. Given this graph structure, we can then derive mechanisms that trade off between accuracy and improvement. Altogether, our work deepens links between causal discovery and incentive design and provides a more nuanced view of learning under causal strategic prediction.

A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result, but it is also known for being one that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A thorough study in a specific context of graphical-model simulation is also conducted.

Recent advances in Transformer architectures have empowered their empirical success in a variety of tasks across different domains. However, existing works mainly focus on predictive accuracy and computational cost, without considering other practical issues, such as robustness to contaminated samples. Recent work by Nguyen et al., (2022) has shown that the self-attention mechanism, which is the center of the Transformer architecture, can be viewed as a non-parametric estimator based on kernel density estimation (KDE). This motivates us to leverage a set of robust kernel density estimation methods for alleviating the issue of data contamination. Specifically, we introduce a series of self-attention mechanisms that can be incorporated into different Transformer architectures and discuss the special properties of each method. We then perform extensive empirical studies on language modeling and image classification tasks. Our methods demonstrate robust performance in multiple scenarios while maintaining competitive results on clean datasets.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node- and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%--21% on various downstream tasks.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.

北京阿比特科技有限公司